
Chapter 1

Electrodynamics

1.1 Ingredients of Standard Model

We think to understand matter and the fundamental interactions on the basis of
three doublets of leptons (

νe
e

)(
νµ
µ

)(
ντ
τ

)

which do not feel strong nuclear forces and three doublets of quarks(
u
d

)(
c
s

)(
t
b

)

which feel these forces due to the fact that each of them appear with three so
called colours.
Even though the neutrino ντ has not been completely identified as different

from the others, both LEP and cosmological results indicate that there are three
types of neutrinos. Moreover Fermilab experiments give evidence of top quark
so that the three-generation scheme seems well established. In all the fermion
doublers the difference of charge between the up and down particles is one, being
zero for neutrinos and 2/3 for u, c and t quarks.
Apart from gravitational forces, the interactions among these spin 1/2 fermions

are given by the exchange of spin 1 bosons. They are the photon γ for electro-
magnetic interactions, the vector bosons W+, W− and Z0 for weak interactions,
and eight gluons g for the strong ones. In addition, due to the fact that the theory
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is built on the basis of a local symmetry i.e. for transformations in each point of
the space, the mechanism to give mass to those fermions and vector bosons which
have it requires the existence of at least one spin-zero boson, the still undetected
Higgs particle. The problem regarding the appearance of an unwanted violation
of the symmetry charge conjugation × parity (CP) in strong interactions may be
solved by the inclusion of another hypothetical spin-zero boson the axion.
Since the standard model is built as a generalization of the well-known elec-

tromagnetic interactions it is convenient to begin with a description of Quantum
Electro Dynamics (QED) to understand the formalism of a relativistic field the-
ory.

1.2 Quantum Electrodynamics

When we consider high energies relativity allows creation (and annihilation) of
particles(2) so that the non-relativistic quantum mechanics which assumes con-
stant number of particles is no longer valid.
The relativistic generalization consists in taking a classical field theory and

identifying pairs of cannonical conjugated variables on which commutators are
established giving therefore the quantum theory.

For the electromagnetic radiation e.g. we may use the 4-potential Aµ = (ϕ,
→
A)

through which the electric and magnetic fields are included in

Fµν = ∂µAν − ∂νAµ ≡ ∂

∂xµ
Aν − ∂

∂xν
Aµ (1.1)

The Lagrangian density for radiation is taken as

LR = −1
4
F 2 ≡ −1

4
FµνF

µν (1.2)

from which the Euler-Lagrange equations give the classical Maxwell equations.
One must note that, since the field definition (1.1) is invariant under a gauge
transformation

Aµ → Aµ − ∂µ∧ (1.3)

a gauge condition must be given to fix the gauge and instead of four independent
components of Aµ there are only two which can be related to the two possible
linear polarizations.
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Fixing canonical commutators for transverse
→
A with the conjugate momen-

tum which turns to be
→
E the radiation energy which can be obtained from the

Lagrangian (1.2)

H =
1

2

∫
d

→
r (

→
E
2
+

→
B

2
) (1.4)

is expressed as the sum of the number of photons times ω = | →
k | for each possible

wave vector
→
k with the associated two polarizations.

If we wish to describe the interactions of radiation with matter in the form of
electrons we must add a Lagrangian density

LM =
−
ψ (i � D −m)ψ =−

ψ [iγµ(∂µ + ieAµ)−m]ψ (1.5)

where ψ is the 4-component spinor, γµ are the Dirac matrices,
−
ψ= ψ†γ0 and m

and e are the electron mass and charge. The so-called covariant derivative Dµ

is introduced to allow the invariance of the Lagrangian under the simultaneous
gauge transformation (1.3) and that of the spinor

ψ → eie∧ψ (1.6)

Now the Euler-Lagrange equations give Maxwell equations with a source Jµ =

e
−
ψ γµψ
The quantum theory for the Dirac field is obtaine fixing anticommutators,

instead of commutators, for ψ and its conjugate momentum ψ+. In so doing the
energy for matter, disregarding its interaction with radiation, is the sum of up

to one electron or positron times E =

√
→
p
2
+m2 for each momentum

→
p with the

associated two possible polarizations of spin.

1.3 Feynman diagrams

Because of the interaction between photons and electrons included in (1.5)

Lint = −eAµ

−
ψ γµψ (1.7)

the perturbation treatment shows that in a vertex represented by i.e. γµ two
lines of electron and one of photon join. The iteration of the interaction indicates
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that the electron line cannot be interrupted whereas the photon one either starts
or ends in a vertex.
The probability amplitude for the quantum transition from a certain number

of initial particles to the final ones, each of them with definite energy-momentum,
is given by all the diagrams which may be drawn joining these particles with
vertices where energy-momentum is conserved.
The Feynman rules correspond to insert the above factor for every vertex, the

propagator
i

� p−m+ iε = i
� p+m

p2 −m2 + iε
(1.8)

for an internal electron line, where ε is a small positive number indicating how
the singularity must be approached, and the propagator

−i gµν
k2 + iε

+ gauge terms (1.9)

for a photon line of momentum kµ.
If there is a closed loop, the energy-momentum circulating along it cannot be

fixed and the integration on d4p
(2π)4

must be performed. If the loop is exclusively
fermionic a - sign appears due to the anticommutation character of these fields
and the trace over the resulting 4× 4 matrix must be taken.
Building in this way the amplitude M a general expression may be given for

the cross-section of 2→ n particles

dσ =
1

| →
v1 − →

v2 |
1

2ωp1

1

2ωp2

|M |2 d
→
k 1

2ω1(2π)3
· · · d

→
kn

2ωn(2π)3

·(2π)4δ4(p1 + p2 −
n∑

i=1

ki) S (1.10)

for bosons, where
→
v1 and

→
v2 are velocities of incident collinear particles and S

includes 1/N! if there are N identical particles among the final ones. For fermions
1
2ω
is replaced by m

E
.

Analogously the life-time τ of a boson of mass M decaying into n bosonic
particles is given by

1

τ
=
1

2M

∫
|M |2 d

−
k1

2ω1(2π)3
· · · d

→
kn

2ωn(2π)3

·(2π)4δ4(p−
n∑

i=1

ki) S (1.11)
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where 1
2M
is omitted if the decaying particle is a fermion and above quoted re-

placements apply for final fermions. (1.10) and (1.11) are valid for any interaction
included in M with rules similar to those of QED.

1.4 Radiative corrections

The perturbative calculations without loops, the so called tree diagrams, give
useful predictions on cross-sections e.g. of Compton scattering δe.
But certain loop corrections produce mathematical divergences which must

be cured leaving finite physical effects.
One of these is the vacuum polarization, i.e. the electron loop correction to

the photon propagator

−
w

ρν

= −(ie)2
∫
d4p

(2π)4
Tr(γρ

i

� p−m+ iεγ
ν i

� p− � k −m+ iε) (1.12)

Since the integral is devergent we regularize it adding a similar contribution
for a heavy fermion of mass ∧ and with undertermined coefficient c

−
w

ρν→−
w

ρν

(k,m) + c
−
w

ρν

(k,∧) (1.13)

Using the Feynman parametrization

i

p2 −m2 + iε
=
∫ ∞

0
dα eiα(p

2−m2+iε) (1.14)

the now convergent integral (for finite ∧) may be expressed as −
wρν= −i(gρνk2 −

kρkν)
−
w where

−
w (k2, m,∧) = 2α

π

∫ 1

0

∫ 1

0
dα1dα2δ(1− α1 − α2)α1α2

.
∫ ∞

0

dρ

ρ
[eiρ(−m2+α1α2k2) + ceiρ(−∧2)] (1.15)

with α = e2/4π. To avoid the logarithmic divergence for ρ→ 0 c = −1, being
−
w (k2, m,∧) = α

3π
-n

∧2

m2
+
α

3π
k2
∫ ∞

4m2

dk′2

k′2
1

k′2 − k2 (1−
4m2

k′2
)1/2(1 +

2m2

k′2
) (1.16)
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Considering the iteration of this correction to the propagator

iGρν(k) =
gρν

k2[1+
−
w (k2)]

+ gauge terms (1.17)

Since the physical mass of the photon is given by the pole of the propagator it
is still zero, but putting two static well separated bare charges e0 at each end of
the propagator, the dressed charge will be

e2 =
e20

1+
−
w (0)

≡ Z3e20 (1.18)

An equivalent way to interpret this result is to think that the charge is the physical
one e at each order of perturbation but a quantum counteterm appears

δLR = −1
4
(Z3 − 1)F 2 (1.19)

whose contribution, added to the loop correction, gives a renormalized propagator

iGR
ρν =

gρν

k2[1+
−
w (k2)− −

w (0)]
+ gauge terms (1.20)

Since for small k2
−
w (k2)− −

ω (0) 
 α
15π

k2

m2 , for static situations k
2 = − −

k
2

and
the Coulomb law is modified

e2
→
k2

→ e2
→
k2
(1 +

α

15π

→
k2

m2
) (1.21)

indicating the first example of running coupling constant, i.e. the charge increaes
for increasing momentum as the cloud due to the polarized vacuum surrounding
a charge is penetrated.
Analogously, the correction to the electron propagator due to a loop given by

a photon of momentum k emitted and reabsorbed by the electron line

−iΣ(p) = (−ie)2
∫
d4k

(2π)4
(
−igρσ
k2 + iε

)γρ
i

� p− � k −m+ iεγ
σ (1.22)

has a divergence which may be regularized subtracting a similar term with a
large photon mass ∧. Iterating this correction Σ appears added to m. There is a
twofold effect the position of the pole is changed and also its residue, i.e.

Σ( � p,∧)| �p∼m = δm(∧)− (Z−1
2 − 1)(� p−m) (1.23)
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Therefore, with the idea of keeping fixed the values of masses and residues at
each perturbative order we must add two couterterms

δLD = δm
−
ψ ψ + (Z2 − 1)

−
ψ (i � ∂ −m)ψ (1.24)

The last divergent loop corresponds to the vertex function where an internal
photon is exchanged between the two electron lines

−ieΓµ(p′, p) = (−ie)3
∫ d4k

(2π)4
(
−igρσ
k2 + iε

)γσ
i

� p′− � k −m+ iεγ
µ i

� p− � k −m+ iεγ
ρ

(1.25)
which is related to the correction to the electron propagator by the Ward identity

Γµ(p, p) = − ∂

∂pµ
Σ(p) (1.26)

To prove this essential identity it is necessary to have a gauge invariant regular-
ization. Defining the renormalization constant for the vertex

Γρ(p′, p)|p′∼p = γ
µ(Z−1

1 − 1) (1.27)

(1.23) and (1.26) give Z1 = Z2, and the addition of the counterterm

δLint = −e(Z1 − 1)
−
ψ � Aψ (1.28)

cancels the divergence.
It is important that this finite number of counterterms is sufficient to make

the results finite at any perturbation order.

1.5 Interaction with external fields

The loop corrections not only can be made finite by the renormalization procedure
but also give extremely accurate predictions for atomic physics.
For the interaction with classical electric and magnetic fields, these corrections

introduce the change

eAµ
c γµ → eAµ

c (γµ + Γµ+
−
ωµν G

νσγσ) (1.29)
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The interaction of the spin with a magnetic field receives an additional con-
tribution from the vertex function to give

− →
B .

→
µ= − →

B .
e

2m
(1 +

α

2π
) 2

∫
d

→
r

−
ψ

→
σ

2
ψ (1.30)

where α
2π
corresponds to the one-loop anomalous magnetic moment.

In analogous way for the electrostatic interaction of an electron with the nu-
cleus, the modification of the Coulomb law (1.21) due to vacuum polarization
gives a decrease of energy for the state n = 2 - = 0 of 27 MHz because the
charge appears larger. But the vertex function gives an increase for the same
state of more than 1000 MHz because the fluctuations of the radiation field on
the average separate the electron from the nucleus in a s state. Both effects
reproduce very accurately the Lamb shift.



Chapter 2

Electroweak Theory

2.1 Symmetry breaking

Classically, for L invariant under a transformation of the field ϕ characterized by
a parameter δα, the so-called Noether current

Jµ =
∂L
∂(∂µϕ)

δϕ

δα
(2.1)

is conserved, i.e. ∂µJ
µ = 0.

There are three ways to break a symmetry explicit, spontaneous and anoma-
lous (quantum)(3), which can be described in the example of σ - model corre-
sponding to the interaction of a pion and a nucleon

L =−
ψ [i � ∂ + g(σ + iπγ5)]ψ + 1

2
[(∂π)2 + (∂σ)2]

−µ
2

2
(σ2 + π2)− λ

4
(σ2 + π2)2 + c σ (2.2)

where apart from the pseudoscalar field π there is a scalar one σ.
Writing

ψ = ψL + ψR =
1

2
(1− γ5)ψ + 1

2
(1 + γ5)ψ (2.3)

for c = 0, L is invariant under the U(1)× U(1) global chiral transformation

ψR → UψR, ψL → V ψL, σ + iπ → V (σ + iπ)U−1 (2.4)

9
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For c �= 0 L is still invariant under the so called vector transformation U = V ,
but not under axial one U = V −1. In fact the axial current is no longer conserved

∂µJ
µ
A = −cπ (2.5)

indicating an explicit breaking of U(1)A and the particles π and σ are no longer
degenerate.
If µ2 < 0 , λ > 0, with c = 0, choosing the potential minimum π = 0,

σ2 = v2 = −µ2/λ and expanding the fields around it we obtain a mass for the
nucleon mN = −gv and

m2
σ = −2µ2 m2

π = 0 (2.6)

so that the pion is interpreted as a Goldstone boson.
This is an example of spontaneous breaking due to the fact that the vacuum

is not invariant under U(1)A appearing a massless particle in correspondence to
it.
(2.2) may be used to describe the decay π → 2γ taking the pion coupled to

a nucleon triangle emerging two photons from the other vertices. The resulting
lifetime is τ−1 = 7eV in agreement with experiment. However calculating the
axial current coupled to the triangle instead of the pion and using (2.5) for the
small experimental value of c, τ−1 would appear to be almost zero. This occurs if
this triangle were finite, but it is divergent and its regularization subtracting the
loop in which a heavy fermion circulates does not respect the chiral invariance.
As a consequence of this quantum effect (2.5) is modified to

∂µJ
µ
A = −cπ − α

8π
εµνρσF

µνF ρσ (2.7)

where the second source of axial current is called “anomaly” and explains the
lifetime of the pion.
If the spontaneous breaking applies to a local symmetry, the so-called Higgs

mechanism appears. Taking radiation coupled to a complex scalar field

L = −1
4
F 2 + (Dµϕ)

∗Dµϕ− V (ϕ∗ϕ) (2.8)

where V = λ(ϕ∗ϕ− v2

2
)2

we may take ϕ around the potential minimum absorbing the phase at each point
by a gauge transformation, i.e.

ϕ(x) =
v + ρ(x)√

2
(2.9)
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In this way from the covariant derivative Dµ the photon acquires a mass, eating
the would be Goldstone boson,

m2
A = e

2v2 (2.10)

and only one scalar neutral particle remains whose mass from the expansion of
V is

m2
ρ = 2λv

2 (2.11)

2.2 Glashow - Salam - Weinberg model

At first sight electromagnetic interactions characterized by α =
1/137.0359840 (51) seems to be very different from weak interactions where four
left fermions (2.3) interact with the Fermi coupling GF/

√
2, GF = (1.16637 ±

0.00002) 10−5GeV −2.
That the latter could not be the fundamental theory was indicated by the fact

that a renormalization procedure similar to that described for QED in 1.4 was
impossible, being necessary that the coupling constant is dimensionless.
It is clear that if we think that, in analogy with the exchange of photon

in QED, weak interactions are mediated by a vector boson of mass M not far
from 100 GeV, the effective Fermi coupling is compatible with a fundamental
coupling of order α. But, since the massive vector boson field satisfies the Lorentz
condition, its propagator is

Gµν(q) = −igµν − qµqν/M
2

q2 −M2
(2.12)

whose second term has a high momentum behaviour that destroys the renormal-
izability.
Therefore we rely on a gauge invariant theory, to ensure renormalizability,

which involves four transformations to account for electromagnetic, charged and
the predicted neutral weak interactions. Since weak interactions require two
charged and one neutral massive vector boson we use the spontaneous symme-
try breaking of three out of four transformations with the Higgs mechanism 2.1
including a couplex doublet scalar field one of whose components survives as the
neutral Higgs particle.
Since only the left component of fermions takes part in weak interactions

we consider a gauge symmetry SU(2), with three generators, affecting only this



12

chirality, and a gauge symmetry U(1) acting non trivially on both chiralities to
give room to electromagnetic interactions. Due to the fact that the photon is
massless we look for the symmetry breaking

SU(2)L × U(1)→ U(1)em (2.13)

Generalizing the elements described in 1.2 and 2.1 we formulate the electroweak
theory by

LEW = LFG + LGH + LHF (2.14)

where the first fermion-gauge term contains the weak and electromagnetic inter-
actions for leptons and quarks, the second gauge-Higgs contribution produces the
symmetry breaking, and the last Higgs-fermion part gives mass to the originally
massless fermions.
For the first generation of fermions

LFG = (
−
u

−
d)Li � D

(
u
d

)
L

+
−
uR i � DuR+

−
dR i � DdR

+(
−
νe e)L � D

(
νe
e

)
L

+
−
eR i � DeR − 1

4
BνµBµν − 1

4
W µν

i W
i
µν (2.15)

where the U(1) quantum numbers follow from the definition

Qem = T3 + Y (2.16)

so that, being T3 = ±1
2
for the up/down component of the doublet, the hyper-

change Y = 1
6
, 2
3
,−1

3
,−1

2
,−1 for the quark doublet, uR, dR, lepton doublet and

eR respectively to reproduce the experimental charges. Note that there is no need
of right neutrino. Thus the covariant derivatives are

Dµ

(
u
d

)
L

= (∂µ + ig
′1
6
Bµ + ig

τi
2
W i

µ)

(
u
d

)
L

DµuR = (∂µ + ig
′2
3
Bµ)uR

DµdR = (∂µ + ig
′(−1
3
)Bµ)dR

Dµ

(
νe
e

)
L

= (∂µ + ig
′(−1
2
)Bµ + ig

τi
2
W i

µ)

(
νe
e

)
L

DµeR = (∂µ + ig
′(−1)Bµ)eR (2.17)
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where there are two coupling constants g′ and g for U(1) and SU(2)L respectively,
with the corresponding gauge potentials B and W i,and τi are Pauli matrices
i = 1, 2, 3.
In terms of

Bµν = ∂µBν − ∂νBµ

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν (2.18)

the two last terms of (2.15) are separately gauge invariant as are each of the other
ones under transformations which are obvious generalizations of (1.3) and (1.16).

LFG contains the interaction between fermion and gauge fields

Lint = −g′JµBµ − gJµ
i W

i
µ (2.19)

which may be rewritten in a way that identifies the electromagnetic potentials as
the one which interacts only with the electromagnetic current

Jµ
em = J

µ
e + J

µ (2.20)

Defining moreover the charged currents which appear in the Fermi interaction

Jµ
± = 2(J

µ
1 ∓ iJµ

2 ) (2.21)

which must be coupled to the charged vector boson fields

W µ
± =

1√
2
(W µ

1 ∓ iW µ
2 ) (2.22)

the combination of B and W3

Aµ = BµcosθW +W
µ
3 sinθW , Z

µ = W µ
3 cosθW − BµsinθW (2.23)

allows to rewrite (2.19) as

Lint = −eJµ
emAµ − e

2
√
2sinθW

(Jµ
+W

−
µ + J

µ
−W

+
µ )−

e

sin2θW
Jµ
NCZµ (2.24)

where the positive electric charge must be taken as

e = g′cosθW = gsinθW (2.25)
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and the new interaction with Z is given by the neutral current

Jmu
NC = 2(J

µ
3 − sin2θWJµ

em) (2.26)

Note that the contribution of electrons to Jµ
em is −

−
e γµe as it must be for (2.24)

to be correct. To relate this model to the very well measured Fermi constant we
note that for q2 << M2

Z ,M
2
W from (2.12)

GW
µν ≈ i gµν

M2
W

, GZ
µν ≈ i gµν

M2
Z

(2.27)

so that we may define an effective four-fermion interaction

iLeff =
1

2!
(iLint)(iLint) (2.28)

giving

Leff = −( e

2
√
2sinθW

)2
1

M2
W

Jµ
+J

−
µ − ( e√

2sin2θW
)2
1

M2
Z

Jµ
NCJ

NC
µ (2.29)

with the identification
GF√
2
=

e2

8M2
Wsin

2θW
(2.30)

Defining

ρ =
M2

W

M2
Zcos

2θW
(2.31)

which is related to the particular form of symmetry breaking we may express

Leff = −GF√
2
(Jµ

+J
−
µ + ρJ

µ
NCJ

NC
µ (2.32)

To generate the masses of W± and Z the minimal choice is to introduce a
complex doublet of scalars with Y = −1

2

LGH = (Dµϕ)
†Dµϕ− V (ϕ†ϕ) (2.33)

so that

Dµϕ = (∂µ + ig
′(−1
2
)Bµ + ig

τi
2
W i

µ)ϕ (2.34)
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and a potential as that of (2.8).
Since the up component of ϕ is neutral and the down one negative, if we

choose the vacuum

ϕVAC =

(
v√
2

0

)
(2.35)

it will be invariant only under U(1)em so that the breaking (2.13) is fulfilled.
Inserting (2.35) in (2.33) the mass term is

Lmass = (
gv

2
)2W+

µ W
µ
− +

1

2
(W µ

3 B
µ)

(
g2v2

4
−gg′
4
v2

−gg′
4
v2 g′2v2

4

)(
W3µ

Bµ

)

so that, diagonalizing the 2× 2 matrix the mass eigenvalues are

M2
A = 0,M

2
W = (

gv

2
)2,M2

z =
g2 + g′2

4
v2 (2.36)

and according to (2.31) ρ = 1 which is characteristic of symmetry breaking by
doublet of Higgs.
Expanding ϕ around the vacuum

ϕ =

(
v+H(x)√

2

0

)
(2.37)

which is general because of the local SU(2) invariance

LGH =
1

2
∂µH∂µH − λ(vH + 1

2
H2)2 +

g2

4
(v +H)2W+

µ W
µ
− (2.38)

+
1

8
(g2 + g′2)(v +H)2ZµZµ (2.39)

so that the mass of the Higgs particle is

M2
H = 2λv

2 (2.40)

and its couplings to W and Z are proportional to their masses.
Going now to the last part of (2.14), fermion masses may be generated with

the help of the doublet ϕ and its charge conjugate

∼
ϕ= iτ2ϕ

∗ =

(
ϕ+

−ϕ0∗
)

(2.41)
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The former, coupled in invariant way with the quark doublet and the up right
singlet, gives mass to u c and t through the breaking (2.35), and the latter coupled
to fermion doublets and the corresponding down right singlets gives mass to
d s b e µ τ . The most general invariant couplings for quark and lepton doublets
QiLLiL and singlets uiRdiReiR, where i = 1,2,3 denotes generations, is

LHF = −(huij
−
QiL
ϕujR

− hdij
−
QiL

∼
ϕ djR

− heij
−
LiL

−
ϕ ejR

) + h.e. (2.42)

The mass matrices in terms of the arbitrary constants h

Mf
ij = h

f
ij

v√
2
, f = u, d, e (2.43)

are not diagonal and must be diagonalized by bi-unitary transformations on gen-
erations of the fields

(ψf )L → Uf
L(ψf )L , (ψf )R → Uf

R(ψf )R (2.44)

such that for each f

(Uf
L)

†MfUf
R =M

f
diag (2.45)

This change of basis has no effect on leptonic currents, because in the model
mν = 0 and we may always transform neutrinos as ψe, and on neutral currents
because they are flavour diagonal. But it does affect hadronic charged currents

Jµ
− = 2(

−
uL

−
cL

−
tL)γ

µ 1


 dLsL
bL


→ 2(

−
ψu)Lγ

µ(Uu
L)

†Ud
L(ψd)L

= 2(
−
ψu)Lγ

µ
∼
C (ψd)L (2.46)

For n generations
∼
C is a unitary matrix with

n(n−1)
2
real angles and n(n+1)

2
phases.

But we may redefine quark fields ψ → eiαψ for both L and R parts without
changing Mdiag. Since one overall phase has no meaning we eliminate 2n − 1
phases leaving (n − 1)(n − 2)/2 physical ones. For n = 3 ∼

C is the Kobayaski-
Maskawa matrix which has 3 angles θi and 1 phase δ which is responsible for CP
violation.
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2.3 Scattering of neutrinos

For a rapid determination of the parameters of the GSW model, apart from those
related to fermion masses, we may use the experimental values(4)

Mz = 91.187± 0.007GeV,Mw = 80.10± 0.27GeV (2.47)

from LEP and CDF/UA2 respectively.
Taking ρ = 1 from Higgs doublet, (2.31) gives sin2θw = 0.2245 ± 0.006, so

that using (2.37) together with the relation (2.25) with the electric charge we
obtain v 
 246 GeV. To determine λ according to (2.40) the Higgs mass should
be found experimentally.
It is important to see the consistency of the model with different pieces of

information, neutrinos scattering among them. The use of nucleons as target is
more convenient than electrons, even though their structure is more complicated,
because the cross section is around 103 times higher.
The deep inelastic scattering of neutrinos on nucleons corresponding to the

exchange of a vector boson with large q2 may be described in the so called zeroth
order QCD as interacting with free quarks, or partons, because its coupling de-
creases with increasing momentum. However the structure function, which gives
the probability of having a quark with a fraction of the momentum of the nucleon,
cannot be calculated from first principles.
It is lucky that with isoscaler targets, i.e. the average of proton and neutron,

the dependence on the structure functions of neutral current and charged current
cross sections is the same. Therefore, calculating the effective lepton-quark inter-
action (2.32) since q2 << M2

w,M
2
z the ratio of total cross-sections for νN → νX

and νN → eX is

Rν =
σNC(νN)

σcc(νN)
= ρ2(

1

2
− sin2θW + 20

27
sin4θW ) (2.48)

whereas for antineutrinos

R−
ν
=
σNC(

−
ν N)

σcc(
−
ν N)

= ρ2(
1

2
− sin2θW + 20

9
sin4θW ) (2.49)

Taking ρ = 1 and sin2θW = 0.23 (2.48) and (2.49) give Rν = 0.31 and R−
ν
= 0.39

to be compared with the experimental values Rν 
 0.31 and R−
ν

 0.37.
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The purely leptonic scattering νµe → νµe and
−
νµ e →−

νµ e is theoretically
simpler because there are no partonic hypothesis. Considering the Z exchange in
the effective way (2.32) the ratio of both cross-sections is independent on ρ

R =
σνµe

σ−
νµe

=
3− 12sin2θW + 16sin4θW
1− 4sin2θW + 16sin4θW (2.50)

Recent experimental results of CHARM II with improved statistics are completey
consistent with sin2θW = 0.23.

2.4 Asymmetries

Considering the scattering e+e− → µ+µ− apart from the contribution of an inter-
mediate γ there is also the neutral current Z intermediate diagram. Whereas for
the photon one must consider its propagator, for the Z one may take the effective
coupling (2.32) if the energy is not too large.
When one performs the square of the amplitude, the interference term of both

diagrams gives a contribution to the differential cross-section proportional to cos
θ between e− and µ− in the centrum of mass frame.
Therefore we may define the forward-backward assymetry

AA−B =

∫ 1
0 dcosθ

dσ
dcosθ

− ∫ 0
−1 dcosθ

dσ
dcosθ

σ(e+e− → µ+µ−) (2.51)

The GSW model predicts, for s square of total e.m. energy,

AF−B = − 3GFρ

16π
√
2α
s , s << M2

z (2.52)

For PETRA energy
√
s ∼ 40 GeV the experimental result is ∼ −10% in agree-

ment with (2.52) even though the fit prefers the inclusion of the propagator effect
M2

Z/(M
2
Z − s) with MZ ∼ 90 GeV. For LEP energy √s ∼MZ the Z width must

be also included in a Breit-Wigner formula and the agreement with the standard
model is again good.
Other assymmetries which are analized are the polarization assymmetry of

the final particle, e.g. τ− in e−e+ → τ−τ+

Pτ (cosθ) =
dσR(cosθ)− dσL(cosθ)
dσR(cosθ) + dσL(cosθ)

(2.53)
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and the left-right assymmetry for polarized beams

ALR =
σL − σR
σL + σR

(2.54)

where σL and σR are cross sections for left-handed and right-handed electrons.

2.5 Parity violation in atoms

We consider again, not only the electromagnetic interaction of electron with the
nucleus, but also the weak neutral current one due to Z exchange. As a rough
estimation since the weak amplitude Aweak ∼ GF and the e.m. one is Ae.m. ∼ e2

q2 ,
the expected effect is

ε ∼ GF

e2
q2 ∼ GF

e2
1

(r2)atom
∼ GF

e2
(meα)

2 ∼ 10−14 (2.55)

which is impossible to measure. But for heavy atoms there is an additional
(nucleus charge)3 factor which, e.g. for Bi, enhances the effect ε ∼ 10−8 which is
observable.
The detailed calculation for the neutral current electron-nucleus interaction

involves the effective Lagrangian (2.32). We take the nucleus as static, dropping
terms which mix its strong and weak Dirac components, and concentrated in the
origin where we fix all the necessary quarks u and d. For the electron we use the
non-relativistic approximation to relate the weak to the strong Dirac component.
The resulting interaction Hamiltonian is

HPV =
√
2GFρ QW

→
σ · →
pe

me
δ3(x) (2.56)

where QW 
 −1
2
N with N number of neutrons. The enchancement cubic factor

quoted above comes from QW , pe and δ
3(x) through the wave-function at the

origin when HPV is used in a non-relativistic perturbative calculation. The parity
violation effect is evident in the electron spin and momentum scalar product.
The agreement with experimental results is good through both calculations

and experiments in atoms are difficult.
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Chapter 3

Radiative Test of Electroweak
Theory

3.1 Radiative corrections

We have so far described the general agreement of GSW model at tree level, i.e.
without loop corrections, with the experimental results.
The first evidence of the need of radiative corrections is offered by (2.30)

because if one inserts in it the experimental weak parameters one obtains e2/4π 

1/128 instead of the expected 1/137. The explanation of this discrepancy is
that the latter value corresponds to low energy, whereas the vacuum polarization

correction to the photon propagator (1.20) for k2 >> m2 is
−
ω (k2)− −

ω (0) 

− α

3π
-n k2

m2 so that
α

k2
→ 1

k2
α

1− α
3π
-n k2

m2

=
α(k2)

k2
(3.1)

If one takes k2 ≈ M2
z which is the scale of validity of electroweak results (3.1)

gives α(M2
z ) 
 1/128.

Following the example of QED, the standard model which is a gauge theory
and therefore renormalizable may interpret the infinities by the replacement of
bare parameters by dressed ones

{g0, g′0, v0, λ0, hij0 } → {g, g′, v, λ, hij} (3.2)

Instead of (3.2) a more physical set of parameters is

{MW ,MZ ,MH , mfi, e
2, θi, δ}

21
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but at present since MW is not very precisely determined it is better to replace
it by the more accurate GF .
For normal applications it is sufficient a reduced set

{ }standard = {GF ,MZ ,MH , mt, e
2}

The Weinberg angle, which is not included in this set, was defined at tree level
in different ways

e0 = g0sinθ
0
W = g

′
0 cos θ

0
W , sin2θ0W = 1−

M02

W

M02
Z

G0
F√
2
=

e20
8sin2θ0WM

02
Z

, Jµ
NC = 2(J

µ
3L

− sin2θ0WJµ
em) (3.3)

Once we choose a relation to define the renormalized θW all the other will have
corrections. The Sirlin choice is

sin2θW = 1− M
2
W

M2
Z

(3.4)

It is proved that GF for µ decay is not renormalized by photons i.e. G(M
2
W ) = GF

so that
GF√
2
=

e2(M2
W )

8sin2θWM
2
W

which may alternatively be written as

GF√
2
=

πα

2sin2θWM
2
W

1

1−�r

(3.5)

If �r were determined exclusively in terms of α, (3.5) together with (3.4) would
allow to define θW in terms of the known parameters of the standard set GF ,MZ

and e2. But �r includes a dependence on mt and a smaller one on MH .
The deep inelastis scattering of neutrinos corresponds to an energy µ2 ∼

100GeV 2 << M2
Z so that one needs sin

2θW (µ) = K(µ)sin
2θW and

Jµ
NC = 2(J

µ
3L −K(µ)sin2θWJµ

em) (3.6)

The photonic corrections to the neutral current give

K(µ) = 1 +
α

π
-n
M2

W

µ2
(3.7)

but also in this case there is a contribution of mt to K(µ).
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3.2 Dependence on top mass

If we start from the effective interaction (2.32) where ρ = 1 in the minimal
standard model, due to the fact that this parameter comes from the ratio of
neutral to charged weak couplings which are modified by the mass corrections in
the propagators of W and Z, the corrected parameter must be taken as

ρ =
1

cos2θW

1

M2
Z

(1 +
ΣZ(0)

M2
Z

)M2
W

1

1 + ΣW (0)
M2

W


 1 + ΣZ(0)

M2
Z

− ΣW (0)

M2
W

(3.8)

where choice (3.4) has been taken. The propagator corrections Σ are due to
fermion loops and are individually divergent but with finite difference, the most
relevant being due to the heaviest quark i.e. the top. It turns out

ρ = 1 +
3α

16πsin2θW
(
mt

MW
)2 (3.9)

This dependence of ρ on mt produces the dependence of K(µ) and �r on the
same mass.
Taking (3.5) as coming from a relation (2.30) among bare parameters shifted

with respect to the dressed ones, if we use (3.4) we obtain δ sin2θW = −cos2θW (ρ−
1) and therefore from (3.9)

K(µ)|dep·mt =
3α

16πsin4θW
(
mt

MZ
)2 (3.10)

Analogously, being �r = − δα
α
+ δGF

GF
+ δsin2θW

sin2θW
+

δM2
W

M2
W
and since the change of α

does not depend on mt and the change of GF is due to that of M
2
W so that both

terms cancel in the above expression, the dependence of �r on mt is the same
(3.10) with change of sign

�r 
 1− α

α(M2
W )

− 3α

16πsin4θW
(
mt

MZ

)2 (3.11)

One must note that in the propagator of the vector boson there is also a
correction coming from a Higgs loop which is smaller because the divergence of
the bosonic loop is only logarithmic and of reversed sign compared to the fermion
one. The contribution to �r is

�r|Higgs 
 11α

48πsin2θW
-n
M2

H

M2
Z

(3.12)
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With these radiative corrections it is possible to compare sin2θW coming from
masses according to (3.4) with the value coming from �r and from the ratio
of neutral to charged deep inelastic scattering of neutrinos. For this last piece
of information one must use (2.48) inserting K(µ) for each sin2θW , taking ρ

2

coming from mt dependence and dividing by a factor corresponding to photonic
corrections of G2

F for charged currents. This comparison depends strongly on mt

and much smoother onMH , being mt 
 170GeV corresponding to CDF evidence
near the upper bound for compatibility of results.

3.3 Physics of Z

LEP has produced extremely precise results for e−e+ around s ∼ M2
Z . Roughly

speaking, considering the fermion pair production e−e+ → f
−
f mediated by Z,

one may use a Breit-Wigner expression for the cross section in terms of total and
partial widths ΓZ and Γf

σf =
12πΓeΓf

(s−M2
Z)

2 +M2
ZΓ

2
Z

(3.13)

Since σe allows to determine Γe, from σµ, στ and σhadrons all the other partial
widths are evaluated. Writing the invisible width

Γinv = ΓZ −∑
f

Γf , f = e, µ, τ, hadrons (3.14)

and knowing theoretically that Γν 
 2Γe the experimental Γinv is consistent with
three light neutrinos with mass mν < MZ/2. The confirmation of the existence
of three generations of neutrinos has been a very important result. Previously
there was a cosmological bound Nν ≤ 4 from the primordial nucleosynthesis of
light elements in the universe.
The detailed analysis is more delicate since e−e+ → ff− can be mediated by

γ and Z and different corrections must be introduced. The most important are
the propagator corrections of γ and Z and photon bremsstrahlung from initial
electrons.
The correction of γ propagator implies the use of e2(s)

s
with an effective charge,

as has been seen.
Regarding the Z propagator, its correction implies a modification of the Breit-

Wigner formula (3.13).
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In fact, considering the relevant part of the inverse propagator

�−1
Z (s) = s−M2

Z + ΣZ(s) (3.15)

its real part must have a zero for s = M2
Z , so that ImΣZ(s) corresponds to an

s-dependent width. Therefore, the resulting expression for the exchange of γ and
Z amplitude is

M = qeqf
e2(s)

s
Je
em · Jf

em +

√
2GFM

2
ZJ

e
NC · Jf

NC

s−M2
Z + isΓZ/MZ

(3.16)

As a consequence, the cross section which replaces the Breit-Wigner formula
(3.13) is

σf =
12πΓeΓfs/M

2
Z

(s−M2
Z)

2 + s2Γ2Z/M
2
Z

+ γ exchange + interference (3.17)

Regarding the bremsstrahlung correction, it is necessary to have initially more
energy than MZ to reach the resonance. The measured cross section is expressed
in terms of σf as

σMf (s) =
∫
H(s, s′)σf(s′)ds′ (3.18)

where H takes into account the radiation from initial state giving a 30% reduction
at the MZ energy.
From the fit of the above expressions the total width is ΓZ = (2492± 7)MeV

and the partial ones Γhad = (1737 · 1 ± 6.7)MeV , Γe = (83.0 ± .5) MeV, etc.
The different partial widths are successfully checked by the standard model. The
calculation of Γhad requires the strong coupling which by the fit turns out to be
αs(MZ) = 0.118± 0.007.

3.4 Cancellation of anomalies

The anomally discussed in 2.1 has not bad consequences in QED because the axial
current is not coupled to the gauge potential, and has the benefit of explaining
the decay of π0 . On the contrary in the GSW model the anomalous chiral
currents are coupled to the gauge potentials and the fact that triangle-diagram
divergences cannot be regularized in a gauge invariant way may spoil the Ward
identities necessary to prove the renormalizability of the theory.
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Therefore one considers necessary to cancel anomalies in the standard model.
Since for non-abelian theories the anomalous source of a chiral current analogous
to (2.7) has a factor

Tr{λa, λb}λc
where { } means anticommutator and λi are group generators, for a SU(2)
model they would be Pauli matrices and the trace would vanish. But for the
SU(2) × U(1) standard model there are contributions when λc corresponds to
hypercharge and a = b for SU(2) generators. Since the anomaly arises from
loops of all the fermions, its cancellation requires according (2.16).

∑
ferm

Qem = 0 (3.19)

It is remarkable that (3.19) is satisfied for each generation including the lepton
doublet and the corresponding quarks remembering that the latter come in three
colours each.
It is important to note that, even though the chiral anomaly is cancelled,

the baryon number and lepton number currents are still anomalous in an equal
amount. This nontrivial result, which allows the nonconservation of baryon num-
ber in the GSW model, has analogy in one spatial dimension. There, because
of the pumping of levels of Dirac sea by electric field, if the vector currents is
coupled to the gauge potential the fermion number is conserved but the chiral
charge is not, and the reversed situation occurs if it is the axial curent to be
coupled to the gauge potential. The latter case is analogous to the GSW model.



Chapter 4

Quantum Chromo Dynamics

4.1 Perturbative QCD

Strong interactions are due to a gauge invariant theory SU(3) which transforms
three possible colours for each quark by the exchange of eight spin 1 massless
gluons(5), one for each group generator. Therefore the gauge invariant classical
Lagrangian is

LCD =
−
q
f

a i( � Dqf)a −mf

−
q
f

a q
f
a − 1

4
Gµν

i G
i
µν (4.1)

where a = 1, 2, 3; i = 1 · · · 8 and the flavour f = 1 · · ·6 for the known quarks. The
mass term, arising from the electroweak breaking, does not spoil SU(3) symmetry
since the transformations are not chiral. The covariant derivative is

Dµq = (∂µ + ig3
λj

2
Gj

µ)q (4.2)

where λj are the 3x3 Gell-Mann matrices which replace the Pauli ones of SU(2).
The gluon fields are

Gi
µν = ∂µG

j
ν − ∂νGi

µ − g3fijkGj
µG

k
ν (4.3)

where fijk are the structure constants of SU(3).

One may implement a perturbative theory analogous to QED with the addi-
tional 3-gluon vertex of order g3 and 4-gluon vertex of order g

2
3 coming from the

term G2 of (4.1).
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This produces an important change for the running coupling constant because
whereas for the effective electric charge (3.1) the so called β-function

βQED =
dα(q2)

d-nq2
=
1

3π
[α(q2)]2 (4.4)

for QCD the effective αs = g
2
3/4π decreases for increasing momentum. This is due

to the fact that in the correction of gluon propagator the gluon loop dominates
over the opposite sign fermion loops if the number of flavours f ≤ 16. This is
seen by the perturbatively calculated β-function

βQCD = −33− 2f
12π

α2s (4.5)

which is solved by

αs(q
2) =

12π

33− 2f
1

-n(q2/∧2)
(4.6)

where ∧ is a free parameter which is determined to be ∼ 200 MeV by a fit of
experiments. This means that αs is reasonably small not only at q

2 ∼M2
Z as said

in 3.3 but also in the deep inelastic scattering range q2 ∼ 100GeV 2.
For the latter case we must introduce corrections due to the interaction of

gluons to the partron model discussion of 2.3. The exchange and emission of
gluons produces a modification of structure function, which gives the probability
for finding a quark inside a nucleon, and of the cross section for the scattering
vector boson-quark. This cross section receives a calculable correction of order
αs(q

2). The structure function for the quark q carrying the fraction ξ of the
momentum of the nucleon turns out to obey the Altarelli-Parisi equation

dfq(ξ, q
2)

d-nq2
=
αs(q

2)

2π

∫ 1

ξ

dξ′

ξ′
fq(ξ

′, q2)P (ξ/ξ′) (4.7)

where P, which can be interpreted as the probability of finding a quark inside
another quark, is a calculable function. It is easier to analyze the moments of the
experimental fq

Mn(q
2) =

∫ 1

0
dξξn−1fq(ξ, q2) (4.8)

which, from (4.7), obey

d

d -nq2
Mn =

αs(q
2)

2π
AnMn , An =

∫ 1

0
d ξξn−1P (ξ) (4.9)
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so that using (4.6)
Mn(q

2) ∝ (-nq2)6An/(33−2f) (4.10)

behaviour remarkably checked.

4.2 Confinement

Quarks, gluons and in general coloured states are not individually observed and
are said to be confined. The confinement property of QCD, i.e. the increase of
attraction for large separation of components, is suggested by (4.6) where the
coupling becomes truly strong for small momentum even though it cannot be
taken as a proof for having been derived with perturbation theory.
If we consider that the QCD coupling is a small quantity gS for small distances

and has a large value gL for large distances, an electrostatic analogy emerges. We
may express

g2L =
g2S
ε
, ε < 1 (4.11)

in terms of a dielectric constant smaller than 1. This is impossible for a normal
material where the polarization goes in the direction of the electric field, so that
we may say that (4.5) characterizes a dia-electric medium. The result is that if
we put a colour charge inside a hole of it, the inner surface will become polarized
with the same sign and it will be energetically convenient for the hole to exist.
If we now put inside the hole a colour charge and its opposite, a meson, or three
different colour charges, a baryon, and take ε = 0 outside, the chromo-electric
field will remain confined. The outside medium has a sort of specular property
compared to a superconductor where magnetic field cannot enter.
’t Hooft and Witten have developed a procedure for the case when the QCD

coupling is not small not allowing a perturbative expansion in powers of it. Call-
ing g3 = g/

√
N where N is the number of colurs, 3 in the physical case, and

representing a gluon propagator by a line of colour going in the positive direction
and another colour in the negative one, it is easy to see that for large N the most
important Feynman diagrams are the planar ones with any number of exchanged
gluons. Very interesting consequences follow i) there are infinite meson states
of definite mass interacting weakly, ii) baryons have large mass and interaction
between them of the same order, iii) interaction between baryon and meson is
small compared to the former mass but of the order of the latter one. This sug-
gests the view that for large distances QCD can be described in terms of weakly
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interacting mesons, with baryons interpreted as non perturbative conglomerates
of them, i.e. solitons.

4.3 Hadronic models

The idea of a varying dielectric constant gives way to the bag model for hadrons.
Neglecting at zeroth order the gluon exchange between quarks inside the bag, the
effect of ε is simulated by a classical static real field σ

L0 =
−
ψ (i � ∂ − fσ)ψ + 1

2
∂µσ∂

µσ − V (σ) (4.12)

where V has an absolute minimum at σ = v and a relative one at σ = 0. Outside
the bag one must have the vacuum σ = v with ψ = 0 to avoid the quark mass
fv. The quark is therefore confined inside the bag where it is massless if σ = 0.
From (4.12) one obtains the coupled equations for σ and the one-quark states

of ψ. Around the bag surface defined by zero mass density
−
ψ ψ = 0 the solution

for σ is of the kink type interpolating between 0 and v. Inside the bag the
slow varying σ can be put in terms of ψ whose Dirac eigenstate equation can be
therefore solved. The ground state energy depends on a parameter ξ so that the
hadron mass is

M = n
ξ

R
+
4π

3
R3p+ 4πR2γ (4.13)

where R is the bag radius, n = 2 or 3 for meson or baryon and the volume and
surface contributions from σ are added. For different bags ξ is fixed and p or γ
is zero, so that R is determined minimizing M in terms of a single parameter.
Several predictions for static properties of hadrons can be made.
The first order gluon exchange modifies (4.12) and consequently (4.13) simply

adding to ξ a constant term proportional to αs inside the bag. From fit of masses
αs 
 3/8 which is reasonable.
The 1/N expansion of 4.2 suggests an effective theory of only mesons. For the

three pions a σ-model like that of 2.1 without fermions and fixed at the potential

minimum
→
π
2
+σ2 = f 2π where fπ is the so called decay constant of pion, to

eliminate the unphysical σ, allows to write the Lagrangian in terms of 3 fields

L(2) =
f 2π

4
Tr∂µU∂

µU † , U = ei
→
τ ·→ϕ(x) (4.14)
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U, from which
→
π and σ may be obtained, is an element of SU(2) and if for

static configurations varying on the 3-dimensional space we cover all the group
a topological number may be defined which can be identified with the baryonic
number. To have a configuration which has a minimum energy for a size R one
must add a second term

L(4) = c4Tr[U
†∂µU,U †∂νU ][U †∂µU,U †∂νU ] (4.15)

where [ ] means commutation and the solution for U is the Skyrme soliton.
Better predictions are obtained for hadrons if to a Skyrme solution for large

distance one adds a bag to describe small distance details.

4.4 θ - vacuum

The vacuum structure of QCD is complicated because classically there are infinite
degenerate nimina of energy for configurations with different topology. From the
quantum point of view it is proved that there is tunnel from each one to the
neighbour because of the existence of the so called instantons. Consequently
there are infinite combinations of the minima generated by

Lθ = θ
αs

8π
Gµν

i

∼
G

i

µν ,
∼
G

i

µν=
1

2
εµνρσG

ρσ
i (4.16)

where, for a particular value of the parameter θ, we have the vacuum. This term

does not affect the classical equations of motion because G
∼
G is a divergence.

Moreover another term of the type (4.16) arises from the mechanism of gen-
eration of quark masses in GSW model. In fact, even though in QCD anomaly
does not spoil renormalizability because gauge potentials are coupled to vector
currents, the diagonalized quark mass matrix M is not necessarily real. Therefore
the phase of each diagonal element may be compensated by a chiral transforma-
tion of the corresponding quark but, in so doing, an anomaly term of the type of
(4.16) appears. Thus, the additional Lagrangian will have the parameter replaced
by

−
θ= θ − arg det M (4.17)

With this replacement LQCD = LCD + Lθ

The new term violates CP invariance at the level of strong interactions and
this is delicate because to satisfy the experimental bound of the neutron electric
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dipole moment it is necessary that
−
θ< 10−9. The smallness of this parameter

which comes from the cancellation of two unrelated contributions is one of the
last problems of the standard model SU(3)× SU(2)× U(1) to be explained.
One might be tempted to ignore Lθ hoping that this absence will be under-

stood in the future, but the θ structure of the QCD vacuum has the virtue of
solving the so called U(1)A problem. This happens because for massless u and d
quarks non perturbative effects of QCD break spontaneously the global SU(2)A
giving pions as Goldstone bosons and also the global U(1)A but giving an un-
physical Goldstone boson explaining its experimental absence.

4.5 Axions

The negligible value of the parameter discussed in 4.4 could be understood if
there would be one massless quark because in this case one might perform a
chiral transformation of the corresponding field which, through anomaly, could

be adjusted to cancel
−
θ.

Peccei and Quinn found a mechanism to cancel
−
θ also if no quark is massless.

One of its versions is to consider an exotic quark coupled to a complex scalar
singlet

L =−
Ψ i � ∂Ψ + ∂µΦ∗∂µΦ− V (|Φ|)− h(−ΨL ΨRΦ + h.c.) (4.18)

invariant under global chiral U(1)

ΨL → eiα/2ΨL , ΨR → e−iα/2 , Φ→ eiαΨ (4.19)

If V has a minimum for |Φ| = fPQ/
√
2 very large taking

Φ =
fPQ + ρ(x)√

2
eia(x)/fPQ (4.20)

a(x) is the massless Goldstone boson corresponding to the spontaneous breaking
and is called axion. Adjusting the parameters of V so that not only Ψ but also ρ
correspond to particles with unobservable large mass, the relevant part of (4.18)
will be

La =
1

2
∂µa∂

µa− i h√
2
a

−
Ψ γ5 Ψ (4.21)
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Through a triangle of the heavy quark an effective coupling of axion with two
gluons appears

LaG = −αs

8π

a

fPQ
Gµν

i G
i
µν (4.22)

By a shift in a(x) one may absorb
−
θ so that the solution of the CP problem

corresponds to see why a(x) must be small. This is so because due to (4.22) the
axion mixes with the pion and acquires a small mass

ma 
 mπ
fπ

fPQ

(4.23)

so that the induced term in the potential m2
aa

2 forces a→ 0.
From astrophysical and cosmological bounds 10−5eV < ma < 10

−3eV so
that being fπ = 93MeV the scale of breaking of the Peccei-Quinn symmetry is
fPQ = 10

10 − 1012 GeV.
Axions might be observed through its interaction with electromagnetic fields

obtained in a way similar to (4.22)

Laγ = −α
π

a

fPQ

→
E · →
B , α = 1/137. (4.24)



Chapter 5

Beyond the Standard Model

5.1 Grand Unified Theories

The Standard Model SU(3)×SU(2)×U(1) (SM) has a remarkable phenomenolog-
ical success without evidence of necessity to go beyond it. The only experimental
motivations come from cosmology and astrophysics
i) The matter-antimatter assymmetry in universe

nB − n−
B

nγ
∼ 10−10

difficult, but not impossible, to explain within Standard Model which perturba-
tively conserves baryon number.
ii) The neutrino mass, not existent in the Standard Model, which could be con-
venient to explain the deficit of solar neutrinos and a part of the dark matter in
the universe.
Moreover, from the theoretical point of view, it is not satisfactory to have a

model with 19 parameters (3 gauge couplings, 2 Higgs parameters, 9 fermions
masses, 4 Kobayashi-Maskawa parameters, 1 angle for QCD vacuum) and arbi-
trary assignment of multiplets and charges.
Leaving aside gravitational interactions, it has been proposed to unify the

three gauge symmetries in a single one gauge group giving way to Grand Unified
Theories (GUT), obtaining some predictions.
The smallest one which contains SU(3)×SU(2)×U((1) is SU(5) which has 24

generators Li. In the 5-dimensional fundamental representation 8 of them corre-
spond to 3-dimensional Gell-Mann matrices, 3 are 2-dimensional Pauli matrices,

36
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1 is the diagonal hypercharge, and the additional 12 are associated to new gauge
potentials called lepto-quarks because have the property of interacting with a
quark transforming it into a lepton.
Regarding fermions, considering the fundamental representations Ψ5 5 =

(3, 1)+ (1, 2) in terms of SU(3) and SU(2) multiplets, one may put there a right
quark and a right charge conjugate lepton doublet. Since the e.m. charge must
be a diagonal traceless generator the quark must be d for the first generation.
The interaction with vector bosons Vµ comes from the definition of covariant
derivative as in the Standard Model and

L(5)
kin =

−
ψ5 i � Dψ5 (5.1)

The rest of fermions can be put in the next representation χ10 10 = (3, 2) +
(3, 1) + (1, 1) which for the first generation contains the left quark doublet, the
left charge conjugate u and the left positron. Since χ10 may be expressed as a
5× 5 antisymmetric matrix, its coupling with vector bosons comes from

L(10)
kin = Tr

−
χ10 � Dχ10 (5.2)

Due to the fact that W 3
µ and Bµ are associated with two SU(5) generators a def-

inite combination of which is the charge coupled to the electromagnetic potential
Aµ, the Weinberg angle is predicted to be

sin2θW = 3/8

which is too high but refers to the scale MX where SU(5) symmetry holds.
One believes that there are two symmetry breakings

SU(5)
MX→ SU(3)× SU(2)× U(1) MW→ SU(3)× U(1)em

where the first must give mass to the 12 lepto-quarks leaving the rest massless
up to the second where W± and Z get mass too.
The first breaking is obtained with scalars in an adjoint representation Σi =

i = 1 · · · 24. Its kinetic Lagrangian is
LΣ
kin = Tr(DµΣ)

†DµΣ (5.3)

with

DµΣ = ∂µΣ + ig[Vµ,Σ] , Vµ = V
i
µ

Li

2
, Σ = ΣiLi

2
(5.4)
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where g is the single SU(5) coupling. The spontaneous breaking is obtained
choosing the minimum of a potential V (Σ) as vacuum Σvac = v where v must
be a diagonal matrix with the same eigenvalues in the triplet and in the doublet
subspaces in order to commute with the 12 generators of the SM.
The second breaking is obtained by a Higgs field in the fundamental represen-

tation and a potential V(H) of whose minima the vacuum is chosen as Hvac = v0
where v0 has non-zero value only for the neutral component of the doublet sub-
space.
A problem is that it is difficult to separate the effects regarding mass between

the scaleMX and the scaleMW . Even though one has not included mixed terms of
Σ and H they appear through radiative corrections. Therefore one must consider
this additional potential V(Σ, H) and impose a very delicate cancellation among
all the renormalized parameters to obtain the separation of scales MX and MW .
This unnatural fine-tuning is called the hierarchy problem.
Regarding the generation of fermion masses, since the fermion part of the

corresponding Lagrangian transforms under SU(5) as (
−
5 +10) × (−5 +10) which

contains the representation 5 but not the 24, to have a gauge invariant contribu-
tion the Higgs 5 H must be introduced, which is satisfactory becaused the effects
will by of order MW and not MX .
Due to the fact that v0 has only one non-vanishing component the equality of

masses of down quarks and leptons is predicted, i.e..

md = me , ms = mµ , mb = mτ (5.5)

As for the case of the prediction of θW (5.5) is not very satisfactory but it refers
to the scale MX and needs corrections.
It is interesting that radiative corrections may relate the SU(5) unified cou-

pling g to the individual three couplings at low energy. The result is

1

α3(E)
=
1

αGU

+
1

6
(4NG − 33) -nMX

E

1

α2(E)
=
sin2θW (E)

αem(E)
=
1

αGU
+
1

6
(4NG − 22 + 1

2
) -n
MX

E

1

α1(E)
=
3

5

cos2θW (E)

αem(E)
=
1

αGU
+
1

6
(4NG +

3

10
) -n
MX

E
(5.6)

where NG is number of generations, αi =
g2

i

4π
, αGU =

g2

4π
indicating that at energy

MX the 3 couplings should coincide. From the experimental values of αem and
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α3 (5.6) allows to determine MX ∼ 1014GeV . Then sin2θW (E) can be calculated
in rough agreement with the low energy value. But with the present very precise
electroweak measurements it is seen that (5.6) is not completely consistent.
In a similar way the predictions (5.5) may be corrected to low energy giving

reasonable values except for the lightest components. Moreover lepto-quarks
produce the transformations e.g.

d→ e+ , d→−
ν

changing baryon and lepton numbers but with conservation of B−L. Considering
at low energy the B violation terms as an effective 4 -fermion interaction one can
calculate the proton lifetime

τp = (1 to 5)10
30 years (

MX

5x1014GeV
)4 (5.7)

which, with previous MX , is too small compared with the experimental bound
τp > 2×1031 years. Therefore we see that, though SU(5) has some good features,
it needs corrections.

5.2 Neutrino mass

In SM and in SU(5) there is no Dirac mass

m(
−
ψL ψR+

−
ψR ψL)

because there is no νR.
Another possibility for neutrinos is the Majorana mass(6)

ψT
LCψL , C = iγ

2γ0

but in SM is again impossible because corresponds to weak isospin 1 which should
be compensated by a weak Higgs triplet that does not exist. In SU(5) such a
triplet exists in the adjoint representation, but such scalars are not coupled to
fermions so that there is no Majorana mass.
Therefore one must think in a new scale M at which B−L is violated so that

Majorana mass is allowed. This may be represented by an effective term

1

M
νTLCνLH0H0
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where H0 is the isodoublet of the 5 H compensating the isospin 1 of neutrinos.
One may expect this mass to be ∼ m2/M with m quark mass.
Gell-Mann thought that the existence of νR may give a Majorana mass for

νRνR of order M, and also Dirac mass
−
νR νL and

−
νL νR of order m. Diagonalizing

the matrix mass for all these contributions one of the eigenvalues m1 decreases
and the other m2 increases with increasing M producing the so called see-saw
mechanism. This may give light neutrinos of mass m1 ∼ 10−3 − 10−6eV which
might explain the solar neutrinos deficit.
Whereas the addition of νR and the violation of B − L are rather ad hoc in

SU(5), they are natural ingredients of another GUT based on the gauge symmetry
SO(10) in which one may expect neutrinos of mass ∼ 10eV , and on the other
hand also τp is larger than the experimental bound.

5.3 Supersymmetry

It is appealing to imagine that for any fermion there is a bosonic partner and
viceversa even though there is no evidence of it from the known particles.
A motivation for supersymmetry (SUSY) is to make easier the problem of

hierarchy in SU(5) being necessary to establish a relation of parameters at bare
level since there will be no renormalization due to cancellation of positive boson
loop with the corresponding negative fermion one.
The transformation between fermion and boson is given by a fermionic gen-

erator Q such that

Q|F >= |B > , Q|B >= |F > (5.8)

Q transforms as a Majorana spinor (2 components), must leave invariant the
momentum of the state i.e.

[Q,Pµ] = 0 (5.9)

and the algebra closes with the anticommutators

{Qα, Qβ} = 2(γµ)αβPµ (5.10)

The minimum content of particles in a SUSY standard model is

i) To photon corresponds photino
∼
γ, Majorana fermion.

ii) To gluons correspond also massless gluinos
∼
g.

iii) To each quark or charged lepton corresponds two complex scalars (squark or
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slepton). To neutrino one complex scalar sneutrino.

iv) To charged massive vector bosons W± correspond Dirac fermions winos
∼
W

±
.

Since for each one there is a missing boson state we add charged Higgs particles
H±.
v) To Z corresponds two Majorana zinos

∼
Z i. Again there is a missing scalar state

which may be the neutral Higgs H .
vi) Since one needs therefore two complex Higgs doublets there are still two
neutral Higgs particles h(scalar) and a (pseudoscalar) with the corresponding

Majorana higgsino
∼
h.

As supersymmetric partners are not observed, SUSY must be broken. Spon-
taneous breaking requires vacuum non invariance, keeping (5.9),

Qα|0 > �= 0 (5.11)

so that from (5.10) the vacuum energy is necessarily positive.
The SUSY modification of SU(5) requires the inclusion of two quintets H

and H ′. Repeating the analysis of (5.6) with the modified interactions one gets
the good results sin2θW (MW ) = 0.236 ± 0.003 and MX 
 2 × 1016GeV which
according to (5.7) makes the proton sufficiently stable.

5.4 Dark matter and baryogenesis

For the near future it is possible that information regarding aspects beyond SM
will come from cosmology and astrophysical observations(7).
From the motion of galaxies and their structures and the primordial nucle-

osynthesis of light elements it seems certain that in the universe there is a 90%
or 95% of non-baryonic dark matter (DM). This DM may be hot (HDM) or cold
(CDM) according with their relativistic or non-relativistic motion at the time of
decoupling. HDM candidate is neutrino which with a mass of 30 eV would explain
all the required matter in universe. Candidate for CDM are axions, which with
mass of 10−5 eV would account for all necessary matter and neutralinos (neutral
weakly interacting SUSY partners).
From the anisotropies detected in the cosmic background radiation and the

formation of structures the model of DM which seems favoured contains 70% of
CDM and 30% of HDM, which would correspond to neutrinos of 7eV. But this
result is sensitive to the details of primordial fluctuations in the universe.
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Another much debated subject is the generation of baryon number in universe.
An obvious candidate is GUT because it perturbatively violates B conservation,
so that baryogenesis would have produced when the universe had a temperature
∼MX since the non-equilibrium related to a breaking symmetry phase transition
is necessary. But it is not easy to accept the existence of this transition because
a large amount of magnetic monopoles, not detected, would have simultaneously
produced.
The alternative for baryogenesis is the transition for breaking of electroweak

symmetry at T ∼ 250GeV . As said in (3.4) baryon current for GSW model is
anomalous, and B can be created passing from one vacuum state to the next de-
generate one. Even though in GSW there are no instantons the top of the barrier
separating vacua, called sphaleron, may be surmounted by thermal excitations.
It is necessary that CP is violated, to distinguish baryon from antibaryon, and
this could be afforded by the Kobayashi-Maskowa phase or move efficiently by
the two Higgs doublets required by SUSY.
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