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1 Introduction

Accelerator physics is an interdisciplinary, applied science. Its progress has been
mainly driven by the demands of high energy physics, i.e. ever higher particle
energies and beam intensities. The development was guided by the knowledge on
general physics but the actual design, construction, operation and exploitation
of accelerators relies on many engineering techniques such as computation, mag-
nets, power supply, vacuum and radio frequency. Accelerators have found their
applications outside high energy physics. For example, in hospitals for cancer
therapy, in solid state physics (neutron spectroscopy), industry (ion implanta-
tion), biology (structure analysis with synchrotron radiation). Furthermore, in
the close future accelerators may play an important role in energy production
and nuclear waste transmutation.

Why do we need accelerators for particle physics ? In chemical reactions
density and temperature control the reaction rate. Energies in the order of
some eV are needed to break up existing chemical bounds. The energy in the
form of heat is distributed over many degrees of freedom.

In nuclear and elementary particle reactions, however, we need high center of
mass energies,

√
s in the range of 1 MeV to more than TeV in order to produce

new particles or to resolve smaller and smaller structures. In the first case, the
center of mass energy has to be equal or larger than the particle mass and in
the latter, the minimum resolvable dimension d is related to the center of mass
energy through d = 0.2 fm/

√
s [GeV].

Examples:

1. To produce a Z boson pair one needs a center of mass energy which equals
at least twice the Z mass or 182 GeV. The LEP collider which today
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performs electron positron collisions at a
√

s close to the Z mass will be
upgraded to that energy (LEP 200).

2. The HERA collider performs electron proton collisions at
√

s = 310GeV.
The smallest object size which can be resolved in the proton is in the order
of 10−18 m.

On the other hand, we need high densities of reacting particles (Luminos-
ity). The reaction cross-sections of point like objects falls like 1/s. In order to
maintain an equally effective physics program the luminosity has to rise at least
proportional to E2 as the energy E of the particle accelerators increases.

The broad and fast developing field of physics and engineering of accelerators
and storage rings cannot be covered by a short series of lectures. Instead,
it is my goal to highlight some of those aspects which are directly related to
the work of a HEP experimentalist as a user in the interaction region of an
accelerator or storage ring. For further reading and studies I recommend for
example the proceedings of the CERN Accelerator School (CAS) [1] and the
book ’The Principles of of Circular Accelerators and Storage Rings’ written
P.J. Bryant and K. Johnson [2].

In the next chapter, I will give a brief overview of the development of ac-
celerators. The linear model of transverse beam dynamics is described in the
third chapter. After this lecture you will understand the terms transfer matrix,
alternate gradient focusing, β-function and emittance. Using the linear tracking
formalism we will show how the machine optics can be used to observe small
scattering angles. In the forth chapter, we will see how perturbations can be
treated in the linear model and you will understand dispersion and beam in-
stabilities due to resonances. Furthermore, we will show that the dispersion of
a machine can be used to measure small momentum deviations. Longitudinal
beam dynamics is shortly treated in chapter 5 to explain phase stability and lon-
gitudinal emittance. An important parameter of the performance of a machine
is the luminosity since it determines the event rate which can be observed. In
chapter 6, you learn how to calculate the luminosity from the beam parameters
and the ’Van der Meer’ Method for measuring the luminosity is explained.

References

[1] Proceedings of the CERN Accelerator Schools, 1985-, Editors: P. Bryant, S.
Turner

[2] P.J. Bryant and K. Johnson, ’The Principles of Circular Accelerators and
Storage Rings’, Cambridge University Press (1992).
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2 Particle Accelerators: A Brief Overview

This chapter sketches only a line through the history of accelerators and is by
no means complete. Much more details can be found in the book of M.S. Liv-
ingston [1] and in a autobiographical account of R. Wideröe’s life and work [2];
also the CAS lectures of K.O. Nielson [3] and P. Bryant [4] have been used to
prepare this manuscript.

Electrostatic Accelerators

The simplest particle accelerators use electrostatic potentials. In the rectifier
generator shown in Fig. 1, the voltage of a cascade DC generator is used to build
up a potential difference between the particle source and the ground terminal.
The apparatus constructed by Cockcroft and Walton 1932 [5] reaches 700 kV.
They split Li nuclei with 500 keV protons, the first important nuclear physics
result obtained with a particle accelerator. Sparking limits the voltage of these
generators to about 1 MV, but they are still used for injection because of the
high currents they can deliver.
Van de Graaf [6] placed the high voltage unit and the accelerator tube in

a tank of compresses gas to rise the sparking limit and replaced the cascade
generator by a charging belt (Fig. 2). The charge produced at the spray comb
is transported by the belt to the top terminal. With the Van de Graaf Gener-
ator one obtains stable voltages in the range of 1 to 10 MV where saturation
sets in. It can deliver beams of ions or electrons with a small momentum spread.

Linear RF Accelerator

As mentioned above, electrostatic accelerators are limited to ∼ 25MeV for
protons. In order to obtain higher energies one has to employ a succession of
accelerating kicks to the particles. This is possible by timing bunches of particles
such that they are in phase with a high frequency (RF) electro-magnetic field.
In linear RF accelerators (LINAC) the accelerating elements are ordered in a
linear structure.
The Wideröe type LINAC [7] shown in Fig. 3 consists of a sequence of

drift tubes and gaps. Alternate tubes are connected to the same terminal of
a RF generator. In order to obtain continuous acceleration the dimensions of
the drift tubes have to be chosen in such a way that the electrical field vector
is parallel to the particle motion when the particle is in the gap and opposite
when in it is shielded by the drift tubes. The length L of the tubes has to
increase proportionally to the particle velocity v. The resonance condition is
L = v/(2f), where f is the frequency of the RF source.
When the particle velocity is close to the velocity of light (relativistic parti-

cles) an energy increase results only in a small velocity increase. In this case, a
traveling wave, for example the TM010 mode of a cylindrical tube, can be used
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for acceleration. The principle can be understood by imagining the particle
’riding’ the crest of the electro-magnetic wave. The phase velocity of the TM
mode is, however, higher than the velocity of light. The remedy is to use an
iris-loaded structure (Fig. 4) which decreases the phase velocity. Field gradients
of about 30 MV are realized in machines now used for medical purposes. For
the RF transmitters with frequencies between 300 and several thousand MHz
are used.

The Cyclotron

LINACs are relatively complicated and expensive devices. It was soon re-
alized that the resonance condition can be equally applied to a set-up where
a magnetic field forces the particles on a circular trajectory passing the same
acceleration gap several times. This principle is employed in a device called
Cyclotron (Fig. 5), which was built for the first time 1932 by Lawrence [8]. For
non relativistic particles the resonance condition is simple: the RF frequency
has to be equal to the revolution frequency. For a fixed frequency the energy
limit is ∼ 25MeV for protons. Cyclotrons became the working tool of nuclear
physics especially because of the high number (intensity) of particles that could
be accelerated.
For relativistic energies the revolution frequency decreases with rising energy.

Hence, the RF frequency has to be down-modulated in order to maintain the res-
onance condition. The highest energy obtained with such a synchro-cyclotron is
720 MeV at the Berkeley 184 inch. With synchro-Cyclotrons one could system-
atically investigate artificially produced mesons and the era of particle physics
started.
For an accelerator it is not only important to cope with a resonance condi-

tion but the motion of the particles also has to be stable against all kinds of
imperfections as for example the natural divergence of the injected beam and its
momentum spread and and all kinds of asymmetries in the magnetic fields. If
the beam is not stable a large fraction of the particles can be lost during accel-
eration and the currents are too low for performing experiments. It is therefore
important to introduce focusing elements into the accelerator.
Because of the momentum spread different particles have different resonance

frequencies. It was shown by McMillan and Veksler [10], [11] that a stable mo-
tion of all particles can be obtained if the particles have a certain phase difference
with respect to the RF (principle of phase stability). The principle is illustrated
in Fig. 6. Here, particles which are slower than exactly synchronous particles
arrive later in phase and get a stronger kick from the RF field. Conversely,
faster particles arrive earlier and get a weaker kick. In both cases the phase
swings in the direction of the nominal phase. Actually, all particles execute so
called synchrotron oscillations about the nominal phase.

The Betatron
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Because of their small mass (1/2000 of the proton mass) electrons become
relativistic at very low energies and Cyclotrons can not be used as electron ac-
celerators. An accelerator adapted for electrons is the betatron [9] or ’beam
transformer’ as it was called by Wideröe [7]. The principle of this device is
shown in Fig. 7. As in the cyclotron the electron is kept by a magnetic field
on a circular orbit. Acceleration is achieved by increasing the magnetic field:
the time-varying magnetic field perpendicular to the plane of motion induces
an electrical field parallel to the particle direction. It was shown by Wideröe
that in order to keep the electrons on a circle with constant radius the magnetic
field strength averaged over the area of the circle has to increase at twice the
rate as the magnetic ’guide’ field at the radius of the particle. With a betatron
electrons can be accelerated up to 200 MeV. It is a robust device frequently
used in hospitals for cancer therapy.

Synchrotrons

As the betatron the synchrotron uses a magnetic bending field which in-
creases during acceleration to keep the particles on a circular orbit [10], [11] .
Acceleration is by a RF voltage operated at the revolution frequency or a higher
harmonic. The frequency has to be upward-modulated synchronously as the ve-
locity of the particle increases. The first Synchrotron built was the Cosmotron
(1952), a 3 GeV proton accelerator (Fig. 8).

Weak and Strong Focusing

In order to maintain transverse stability all accelerators built before 1952
used so called weak focusing magnets. The magnetic field of the bending mag-
nets decreases slightly in the vicinity of the nominal orbit. Particles perform
stable motions, so called betatron oscillations, about the nominal orbit. The
amplitude of these oscillations depends on the focusing power of the system.
Hence, the aperture needed to contain the beam in a ’weakly focusing’ acceler-
ator is large and the magnets become very costly for big machines limiting the
maximum energy to about 10 GeV.
The concept of strong focusing can be understood from the fact that a pair

of optical focusing and defocusing lenses can be arranged in such a way that
the total system is focusing. Magnetic quadrupoles act for charged particles as
optical lenses. Christofilos and independently Courant, Livingston and Snyder
[12] showed that certain arrangements of quadrupoles with alternating mag-
netic gradients (AG) (Fig. 9) can be used to achieve a stable particle motion.
The focusing power of the AG system is much stronger than that of weakly
focusing magnets and the way was now open to built accelerators with energies
three orders of magnitude higher than could have been envisaged with the old
technology.
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Colliders

As pointed out in the introduction, for high energy physics the important
quantity of an accelerator experiment is the center of mass energy of the colliding
particles. All experiments before 1962 where so called ’fixed target experiments’
where the accelerated particles collide with a target at rest. The advantage of
fixed target experiments is that one can provide a variety of secondary beams
of hadrons (p, K, p, π ...) and leptons (e, µ, ν ...) and that the reaction rate is
high. Its big disadvantage is, however, the waste of energy.
In the fixed target scenario, the center of mass energy is given by the ex-

pression:
√

s =
√
2mpE , (1)

wheremp is the proton mass and E the energy of the projectile particle. It is
evident that only a fraction of the energy can be used for the particle reaction.
This fraction decreases with increasing particle energy:

√
s

E
∝ 1√

E
(2)

In colliding beam accelerators, generally, two particles of the same mass and
energy collide head-on. In this case, the center of mass energy is twice the
particle energy. The first machines of this kind where the 2x200 MeV electron
positron collider, Anelli di Accumulazione (AdA) at Frascati and the 2x500
MeV Princeton Standford collider. Since they have opposite charge, electrons
and positrons can be accelerated in the same ring (single ring colliders).
Electron positron colliders dominated high energy physics in the sixties and

seventies. The largest e+e− machine is the LEP at CERN, Geneva, which
started operation in 1989 and operates currently at a energy up to 2x55 GeV. It
will be upgraded to 2x100 GeV which is the limit set by the inherent energy loss
through synchrotron radiation. Future electron positron colliders with higher
energy have to be linear colliders. The principle is successfully tested at the
2x50 GeV Standford Linear Collider (SLC) [14] which started operation in the
same year as LEP.
Single ring proton anti-proton colliders can not be built in the same way

as e+e− colliders. The reason is that anti-proton sources have a much too
low intensity to cope with the required luminosities. Thus, the first colliding
beam facility for protons was a double ring collider the 2x31 GeV Intersection
Storage Ring (ISR) [13] at CERN. The ISR started operation in 1971. Until
its shut-down in 1984 its performance was steadily improved creating a general
confidence in the predictability of hadron colliders.
A next big step in the direction of higher energies was possible through the

invention of stochastic cooling by Simon van der Meer [15] with which it was
possible to reduce the beam dimension of an anti-proton beam and thus increase
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its intensity. The technique was adopted by C. Rubbia et al. [16] in their project
to accumulate and cool low energetic antiprotons in a storage ring over a long
period then accelerating them in the existing CERN Super Proton Synchrotron
SPS up to 270 GeV and collide them with a proton beam. With the discovery
of the intermediate vector bosons W and Z the facility (Spp̄S) had a spectacular
success. A similar accelerator complex the TeVATRON [17] started operation in
1985 at Fermilab, Chicago. It now operates at a energy of 2x900 GeV. The two
experiments at the Fermilab collider, CDF and D0, observe significant signals
of the heaviest lepton of the standard model, the top quark.
An important new feature of the TeVATRON is the use of super conducting

magnets. The advantage of super conducting magnets is the high field strength
(up to 8 T) that can be reached keeping the size and hence the cost of the
collider small as compared to conventional technology (up to 1.5 T).
A different kind of machine is HERA [18] at DESY (Hamburg). It is a double

ring collider shooting electrons on protons at a
√

s of 310 GeV. The collider acts
like a huge electron microscope exploring the proton structure down to 10−18m.

Accelerator Complexes

Modern accelerator facilities as at CERN or Fermilab provide complexes of
linked injectors, accumulators, accelerators and storage rings. Fig. 10 shows
a part of the CERN accelerator complex including the SPS. In future the SPS
will inject protons in a even larger machine, the LHC [19], which will be accom-
modated in the existing LEP tunnel. At LHC, one will perform proton proton
collisions at a center of mass energy of 14 TeV and one hopes to observe the yet
undiscovered Higgs boson.
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3 Transverse Particle Motion in a Circular Stor-

age Ring

Ideally, particles in a circular storage ring move along straight lines when they
are in a drifts-pace and along circle segments when they traverse a dipole mag-
net. The nominal orbit closes after one turn and approximates in its shape a
circle. In real life, however, the particles do not have the same initial conditions
when they arrive at the storage ring: they have different angles, positions and
momenta with respect to the nominal particle.

A storage ring consisting only of straight sections and dipoles has an inher-
ent problem: a rms angular spread ∆θ of the beam particles transforms after
a quarter turn into a spatial spread of ρ∆θ, where ρ is the radius of the ma-
chine. An angular spread of some mrad, for example, would result in a beam
width of some meters if the radius is in the order of km. This would require
magnet dimensions which make the machine un-payable. The remedy is to use
quadrupole magnets introducing a restoring force proportional to the excursion
of the particle.

In the following section we will write down the general equations of motion of
a charged particle in a magnetic field. This equations are inherently non linear
and one can not learn much from them. If we consider, however, deviations
from the nominal orbit that are much smaller than the bending radius and
allow only magnetic dipole and quadrupole fields the equation of motion can
be linearized. Many important features of transverse beam dynamics can be
understood within this linear model. More details may be found in references
[1] - [5], which have also been used for the preparation of this lecture.

3.1 The Equation of Motion and its Linearisation

The equation of motion of a charged particle in a magnetic field �B using Carte-
sian coordinates is:

dp

dt
=

d

dt
(m�v) = −e(�v × �B) (1)

Rewriting the equation for cylindrical coordinates (ρ , θ , z) defined in Fig. 1 one
obtains:

Fρ =
d

dt
(mρ̇)− mρθ̇2 = −eρθ̇Bz (2)

Fθ =
1
ρ

d

dt
(mρ2θ̇) = −e(żBr − ρ̇Bz) (3)

Fz =
d

dt
(mż) = eρθ̇Br (4)

In case of a circular motion in a constant dipole field B0 with radius

ρ = ρ0 = const. (5)
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one obtains for the relation between momentum p, radius and magnetic field
strength the cyclotron relation:

p

e
= B0ρ0 ,

which gives in practical units:

B [T]ρ [m] = 3.3356 p [GeV/c] . (6)

Furthermore, the angular velocity is independent of the bending radius:

θ̇ =
e

m
B0 = Ωc . (7)

Example:
The bending radius of a 7000 GeV proton in a magnetic field of 8 T amounts
to 2.9 km.

Assuming that the deviations from a circular orbit are small the azimuthal
component of the particle velocity vθ = rθ̇ is much larger than the transverse
components vr and vz so that:

θ̇ � v

ρ(t)
. (8)

In this case the radial magnetic force looks like a central force balanced by the
radial acceleration:

Fρ =
d

dt
[mρ̇]− mv2

ρ
= −evBz . (9)

In the next steps we replace the time t by the distance s measured along the
beam trajectory:

d

dt
≡ v

d

ds
(10)

and for the magnetic field we consider only the first two terms of a Taylor
expansion corresponding to dipole and quadrupole field components:

∆Bz = Bz − B0 =
[

∂Bz

∂x

]
0

x + ... (11)

For the quadruple component we define the focusing strength k as the normal-
ized field gradient:

k = − 1
B0p0

[
∂Bz

∂x

]
0

. (12)
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The radial coordinate ρ can be replaced by the excursion x which measures
the radial deviation of the particle from the nominal orbit:

x = ρ − ρ0 . (13)

Under the assumption that the excursion is small against the local radius of
gyration (x � ρ0) one obtains:

d2

ds2
x +

1
ρ0

p0

p
− 1

ρ
− kx = 0 (14)

Assuming small momentum deviations ∆p and excursions x we can write

p0

p
= 1− ∆p

p0
(15)

1
ρ
=

1
ρ0

(
1− x

ρ0

)
(16)

and it follows the linearized equation of motion:

x′′ −
(

k − 1
ρ2
0

)
x =

1
ρ0

∆p

p0
(17)

The motion in the z-direction (perpendicular to the bending plane) can be
derived in an analogous way. Note that since ∇× �B = 0 the field gradients are
related by

∂Bx

∂z
= −∂Bz

∂x
k → −k

(18)

The equations of motion for small particle excursions in the z-direction is:

z′′ + kz = 0. (19)

The term 1/ρ2
0 in equ. (17) describes the weak focusing of a pure bending mag-

net. For accelerators with large radius, it can be neglected compared to the
strong quadruple focusing k.

Examples:
The HERA proton ring has k = 0.032m−2 and 1/ρ2 = 2.9 10−6m−2. The LHC
will have k = 0.093 10−2 m−2 and 1/ρ2 = 1.1 10−7m−2.

In the following, we will discuss the solutions of the equation of motion for
the special case where k(s) = const. and ∆p = 0. The equation of transverse
motion without momentum deviation can be written in the more general form:

x′′(s) + K(s)x(s) = 0 , (20)

14



where K(s) is 0 for a drift space, 1/ρ2 for a bending magnet and k (−k) for a
focusing (defocusing) quadrupole. Within these elements K(s) is constant and
well known solutions exist for these intervals in s:

x(s) =




x0 cos
√

ks + x′
0√
k
sin

√
ks if K > 0,

x0 + x′
0s if K = 0,

x0 cosh
√

ks + x′
0√
k
sinh

√
ks if K < 0 .

(21)

where x0 and x′
0 are the initial conditions at for x(s) and x′(s) at the entrance

of the element. The general solution can be written in the form :

x(s) = x0C(s) + x′
0S(s) . (22)

C(s) and S(s) being two independent solutions, the Wronski determinant W
has to meet the condition:

W =
∣∣∣∣ C S

C′ S′

∣∣∣∣ 	= 0 (23)

This implies that the derivative of W vanishes identically:

dW

ds
=

d

ds
(CS′ − SC′) = CS′′ − SC′′ = −K(CS − SC) = 0 (24)

Hence, the value of W is determined everywhere by the initial conditions which
we can choose as:

C0 = 1 , C′
0 = 0 , S0 = 0 , S′

0 = 1 ❀ W = 1 . (25)

3.2 Analogy with Ray Optics and Transfer Matrices

In Fig. 2, we illustrate for a focusing optical lens how one can construct the
image of an object using two independent ’ray-vectors’. Using this ray vectors
as basis vectors of a Cartesian coordinate system the action of the lens can be
written as a linear transformation:(

x

x′

)
=

(
1 0

−1/f 1

) (
x0

x′
0

)
(26)

In the same way we can write the solutions for the transverse motion of particles
in the elements of an accelerator optics:(

x(s)
x′(s)

)
=

(
C(s) S(s)
C′(s) S′(s)

) (
x0

x′
0

)
(27)

For each element of the machine optics C(s) and S(s) are constants. The
solution for a string of elements can be obtained by multiplying subsequently
with the transfer matrix of each element:

�x(s) = M�x0 = MN • MN−1 . . . • M1�x0 (28)
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The simplest transfer matrix is that of a drift space of length l. The matrices
for the x and z directions are equal:

Mx,z =
(

1 l
0 1

)
(29)

For the sector dipole magnet shown in Fig.3 the transfer matrices are:

Mx =
(

cosϕ ρ sinϕ
−1/ρ sinϕ cosϕ

)
, Mz =

(
1 l
0 1

)
, (30)

where the length l. The bending radius ρ and the bending angle ϕ are related
through:

ϕ = l/ρ (31)

For small bending angles one can use the approximation:

Mx =
(

1 l
−l/ρ2 1

)
. (32)

Comparing with the transfer matrix of a thin lens we see that a sector magnet
acts in the x-direction like a focusing lens and in the z-direction like a drift
space.

The transfer matrices for a quadrupole which focuses in the x-direction are:

Mx =
(

cosϕ 1/
√

k sinϕ

−√
k sinϕ cosϕ

)
(33)

Mz =
(

coshϕ 1/
√

k sinhϕ√
k sinhϕ coshϕ

)
, (34)

where ϕ = l
√

k. For the thin lens approximation

l
√

k � 1 (35)

one obtains with 1/f = l
√

k:

Mx =
(

1 0
−1/f 1

)
, Mz =

(
1 0

1/f 1

)
. (36)

The magnetic potential Φ within a quadrupole (4) is:

Φ(x, z) = gxz (37)

and the magnetic field is �B = −∇Φ = −g(z, x) or
∣∣∣ �B

∣∣∣ = g
√

x2 + z2 = gr.
Hence, the magnetic field strength depends only on the distance r from the
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axis. In practical units the relation between focusing strength k and gradient g
is:

k[m−2] = 0.2998
g[T/m]

p[GeV/c]
(38)

Example:
The focusing strength of a quadrupole magnet with a gradient of 200 T/m is for
7 TeV particles 8.610−3m−2. Assuming a magnetic length of 5 m the focusing
length amounts to 23 m.

From equ. (18) we see that a quadrupole acts always focusing in one and
defocusing in the other direction. It is, however, possible to arrange a sequence
of focusing and defocusing lenses in such a way that the net effect is focusing.
Using the matrix formalism derived above it is easy to derive a stability criterion
for the lattice.

3.3 Stability Criterion

Particles traveling through a circular storage ring see an infinite sequence of
transfer matrices T, where T can be the transfer matrix for the full orbit or for
a machine cell which repeats itself m-times (m=2, 3 , 4 ..). Hence, one can write
for the transfer matrix of n cells:(

y

y′

)
n

= T n

(
y

y′

)
0

. (39)

In order to maintain a stable motion Tn must stay finite. Consider the eigen-
values λ1 and λ2 of T defined by the equation:

T y1,2 = λ1,2y1,2 (40)

or

detT − λI = 0 . (41)

Writing T in the form

T =
(

a b
c d

)
(42)

yields

λ2 − λ (a + d)︸ ︷︷ ︸
traceT

+(ad − bc)︸ ︷︷ ︸
1

= 0 (43)

λ2 − λtraceT + 1 = 0 . (44)
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Introducing a new parameter cosµ

cosµ =
1
2
traceT (45)

the eigenvalues are:

λ1,2 = cosµ ± ı sinµ = exp±ıµ . (46)

Now we can re-express T n using a similarity transformation S and one obtains:

T n = S

(
e+ıµ 0
0 e−ıµ

)n

S−1 = S

(
e+ınµ 0
0 e−ınµ

)
S−1 . (47)

The particle excursions stay finite if µ is real and we arrive at the stability
condition for a circular storage ring:

|traceT |
2

< 1 . (48)

Example: FODO Cell

The simplest sequence of strongly focusing elements leading to a stable mo-
tion is the so called FODO cell consisting of a focusing (f1) and a defocusing
quadrupole (f2) separated by a drift space of length L. In the thin lens approx-
imation the transfer matrix in x-direction is:

Tx =
(

1 L
0 1

) (
1 0

1/f2 1

) (
1 L
0 1

) (
1 0

1/f1 1

)
(49)

Evaluating the trace of the matrix one obtains the stability condition:

|traceTx|
2

=
∣∣1 + L/f1 + L/f2 + L2/(2f1f2)

∣∣ < 1

Evaluating the expression writing d1 = L/f1 and d2 = L/f2

d2 <
−d1

1− 0.5(−d1)
∧ −d1 < 2 (50)

and similarly for the z-direction:

−d1 <
d2

1− 0.5d2
∧ d2 < 2 (51)

Plotting the condition in the (−d1) − d2 plane one obtains the diagram shown
in Fig. 5. The region of stability looks like a necktie (Necktie Diagram ).
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3.4 Parameterization of the Transverse Motion

So far we obtain a stepwise solution of the transverse particle motion by mul-
tiplication of a transfer matrix for each element the particle traverses. This
procedure is, however, somewhat unsatisfactory, because of the lack of a smooth
trajectory. Furthermore, we do not make use of the pseudo harmonic appear-
ance of the equation of motion and the machine periodicity. Finally, it is difficult
to imagine how one could treat perturbations of the ideal motion.

The equation of motion

d2y

ds2
+ K(s)y = 0 (52)

corresponds for k = const > 0 to a harmonic oscillator with the solution

y(s) = C cos (
√

Ks + µ0) . (53)

For the general solution we can try the pseudo-harmonic ansatz by varying the
constants:

y(s) = A
√

β(s) cos (µ(s) + µ0) . (54)

Inserting the new variable β, the betatron amplitude function, in the equation
of motion one obtains the diff. equation:

d2

ds2
β

1
2 + K(s)β

1
2 = β− 3

2 . (55)

Furthermore, the phase advance µ(s) is related to the β-function through

µ(s) =
∫ s

0

dσ

β(σ)
. (56)

The solution for the particle excursion can be written in the form

y(s) = Cβ
1
2 cos (µ + µ0)

= Aβ
1
2 cosµ + Bβ

1
2 sinµ .

(57)

Introducing a new variable α for the derivative of β.

α(s) = −1
2

d

ds
β(s) (58)

one can write for the y(s) and its derivative y′(s) :
(

y(s)
y′(s)

)
=

(
β1/2 cosµ β1/2 sinµ

−β1/2(α cosµ + sinµ) β−1/2(cosµ − α sinµ)

) (
A

B

)
(59)
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Inserting the initial conditions (y0, y′
0) at s = s0 one obtains for A and B:

A = y0β
−1/2
0 (60)

B = y′
0β

1/2
0 + y0α0β

−1/2
0 (61)

The solution may now be written as the product of a generalized transfer
matrix T (s|s0) and the initial conditions:

(
y(s)
y′(s)

)
= T (s|s0)

(
y(s0)
y′(s0)

)
, (62)

where ∆µ denotes the phase difference between the two positions. Now we make
use of the fact that the focusing function has a periodicity:

K(s) = K(s + L) , (63)

Imposing the condition

β1 = β2 = β (64)
α1 = α2 = α (65)

for s2 = s1 + L we obtain for the transfer matrix of one period:

T (s + L|s) =
(

cosµ0 + α sinµ0 β sinµ0

−γ sinµ0 cosµ0 − α sinµ0

)

= I cosµ0 + J sinµ0

(66)

with

I =
(

1 0
0 1

)
; J =

(
α β
γ −α

)
(67)

and 


β

α = − 1
2

dβ
ds

γ = (1 + α2)/β


 Courant Snyder or Twiss Parameters (68)

µ0 Phase Advance per Revolution (69)

Q =
µ0

2π
Tune (70)

Examples:

(1) The β-function of a symmetric interaction region
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Let s0 be the position of a symmetric interaction region (α0 ∝ dβ/ds = 0)
then the matrix T (s|s0) for transforming a particle position in phase space
(y0, y′

0) to a point s along the beam line is:

T (s|s0) =(
(β/β0)1/2 cos∆µ (ββ0)1/2 sin∆µ

−(ββ0)−1/2 sin∆µ (β0/β)1/2 cos∆µ

) (71)

Between the interaction point and the first magnetic elements their is always
a drift space of length L in which the experiments are placed. For this drift space
the transfer matrix is:

T (s|s0) =
(

1 L
0 1

)
(72)

Comparing the two matrices one finds for the β-function in the drift space of a
symmetric interaction region:

β(s) = β�

(
1 +

s2

β�2

)
(73)

where β� is the value of the β-function at the interaction point.
The phase advance ∆µ in the drift space is given by:

∆µ =
∫ L

−L

1
β(s)

ds =
1
β�

∫ L

−L

1
1 + s2/β�

ds = 2 arctan
L

β�
(74)

In order to obtain very high luminosities it is necessary that the beam density
in the interaction point is very high. We see later that in this case β� has to be
small. In the case L � β� the phase advance is equal to π. Hence every high
luminosity interaction region contributes with a phase advance of π to the total
tune of the machine.

(2) Tracking particles emerging from a symmetric interaction region

From equ. (71) we see that a particle with a excursion x� and the angle
x′� at the interaction point will have at a distance s from the interaction the
excursion x(s) given by:

x(s) = (β/β�)1/2 cos∆µx� + (ββ�)1/2 sin∆µx′�

= vx� + Leffx′�

v : Magnification
Leff : Effective Length

(75)
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3.5 Phase Space Trajectories and Emittance

The equations

y = A
√

β cos (µ + µ0) (76)

y′ = A/
√

β(sin (µ + µ0) + α cos (µ + µ0)) (77)

represent a parameterization of an ellipse in the (y, y′) plane (phase space plane).
Fig. 6a shows the ellipses for two particles with different values of the parameter
A and Fig. 6b shows as solid points the phase space positions of one and the
same particle observed at a fixed position along the beam line. Note that for
each revolution in the machine the particle makes Q revolutions in the phase
space plane.

Eliminating the phase terms in the ellipse parameterization yields the Carte-
sian co-ordinate representation of the beam ellipse:

γy2 + 2αyy′ + βy′2 = A2 = const. (Courant Snyders Invariant)
(78)

The area of the ellipse is S = πA2. The form of the ellipse changes as we move
along the beam axis but the area stays constant. S is also called the single
particle emittance.

The invariance of the phase space are is a direct consequence of the Liouville
Theorem which states:

In the vicinity of a particle, the particle density in phase space is constant
if the particles move in an external magnetic field or in a general field in which
the forces do not depend on velocity.

A particle beam consists typically of 1010 to 1013 particles each with its own
invariant single particle emittance S. Imagine that one could measure at a fixed
point along the beam line the position (y, y′) in phase space of all particles. The
projection of the positions on the y−axis will then give a statistical distribution
of the particle excursions, which one calls beam profile (Fig. 7). Instead of the
single particle emitttances it is convenient to define the beam emittance ε which
is a measure for the beam density independent of the beta value:

ε =
σ2

y

βy
(79)

Up to now we did not take into account the possibility that the particles
change their momenta, for example during acceleration. In this case y′ and
hence ε will not be constant anymore. Since, however, the acceleration is only
parallel to the beam line, the transverse momentum py of each particle stays
constant:

py = y′p = y′βγm0 = const. ⇒ y′ ∝ 1
βγ

, (80)
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where the factor βγ is the ratio of the particle momentum p over its rest mass
and should not be confused with the Twiss parameters. The invariant of the
motion for arbitrary momentum is the phase space integral∫

dpyy = const.γ , (81)

which leads to the definition of the normalized emittance εn:

εn = βγ
σ2

y

βy
= const.γ (82)

From this relation we see that the width of the beam profile decreases during
acceleration. The process is called adiabatic damping. Fig. 8 shows the relation
between the emittance ε, the β-function and the beam parameters.
Examples:

1. Beam Size at the LHC

The normalized emittance of the LHC will be 3.75µm at γ = 7463. In
the high luminosity interaction regions β� amounts to 0.5 m. The beam
size in the interaction point is σ� =

√
εnβ�/γ = 15.8µm and the beam

divergence
√

εn/(β�γ) = 32µrad. In the arcs, where the average value of
the β-function is ∼ 100m the beam size amounts to 220µm.

2. Observation of small scattering angles.

Particles which are scattered under a very small angle can only be observed
if the excursion of the particle is a factor 10-15 larger than the beam width
at the position of the detector up streams of the collision point.

The excursion x (Fig. 9) at a distance s from the interaction point is:

x(s) =
√

β(s)β� sin∆µθ� +
√

β(s)/β� cos∆µx� , (83)

where θ� is the scattering angle and x� the transverse position of the
collision. Choosing ∆µ close to π/2 the excursion will be independent of
the spot size (parallel to point focusing).

x(s) =
√

β(s)β�θ� (84)

Imposing the condition that the measurement can only be made for a ex-
cursion larger than K (10-15) times the beam size we obtain an expression
for the minimal scattering angle:

x(s) =
√

β(s)β�θ�
min = K

√
β(s)/β�σ� (85)

⇒ θ�
min = K

σ�

β�
= K∆θ� (86)
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The minimum measurable scattering angle is just K times the divergence
of the beam at the interaction point. In order to observe processes with a
small scattering angle, as for example elastic pp scattering, one needs an
interaction region with a small beam divergence and, hence, high β�.

Measurements of the differential elastic cross-section dNel/dt at small mo-
mentum transfer t can be used to measure the total hadronic cross section
σtot [6]. The optical theorem relates the total hadronic cross-section to
the forward elastic scattering rate:

σtot
2 =

1
L
16π(�c)2

1 + ρ2

dNel

dt

∣∣∣∣
t=0

(87)

where t = p2θ2 and

ρ =
�F (s, t = 0)
�F (s, t = 0)

(88)

F (s, t = 0): Elastic forward scattering amplitude. Using the relation

σtot =
Nel + Ninel

L (89)

the luminosity L can be eliminated and one can express the total hadronic
cross section as a function of the interaction rate Nel + Ninel and the
forward scattering rate:

σtot =
16π(�c)2

1 + ρ2

dNel
dt

∣∣
t=0

Nel + Ninel
. (90)
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4 Imperfections and Resonances

So far we learned that free particle motions relative to the nominal orbit of a
circular accelerator can be described by the β-function. The particles oscillate
in a pseudo harmonic manner. We will see in the following, that using the
known β-function the particle co-ordinates can be renormalized such that the
motion is harmonic in the new system. From our knowledge about forced har-
monic oscillations we gain insight in the perturbed particle motion of a circular
accelerator [1].

Consider the inhomogeneous Hill Equation

d2

ds2
x(s) +K(s)x(s) = f(s) . (1)

The inhomogeneity f(s) may describe any perturbation like magnetic dipole
and quadrupole field errors or a momentum deviation. Inserting the pseudo
harmonic ansatz from the previous chapter one obtains a non-linear differential
equation for β(s)

d2

ds2
β

1
2 +K(s)β

1
2 = β−

3
2 . (2)

The equation can be simplified by introducing new variables η and φ:

η =
x√
β

and dφ =
ds

Qβ
(Floquet Transformation) (3)

Inserting the new variables into equ. (1) yields:

d2

dφ
η +Q2η =

β
3
2

Q2
f(φ) , (4)

which is the equation of motion for a forced harmonic oscillator with driving
term β3/2/Q2f(φ). For free oscillations the solution is

η(φ) = η0 sinQ(φ− φ0) . (5)

Before discussing the general solutions let us recall what we know about the
forced harmonic oscillator.

4.1 Forced Harmonic Oscillator

The equation of motion of a free harmonic oscillator is:

ẍ(t) + ω2
0x(t) = 0 . (6)
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Its solution can be written in the form

x(t) = a sin (ω0t+ ϕ) (7)

In case the oscillations are driven by a time dependent force f(t) the equation
of motion is

ẍ(t) + ω2
0x(t) =

f(t)
m

(8)

A general solution of the inhomogeneous diff. equation can be found using
the so called retarded Green’s Function G(t|t0) which is defined as the response
of the system to a δ-pulse at t = t0:

G̈(t|t0) + ω2
0G(t|t0) =

δ(t− t0)
m

(9)

which is:

G(t− t0) = 1
m

sinω0(t− t0)
ω0

θ(t− t0) (10)

The general solution is then obtained by time convolution of the retarded
Green’s Function with the driving term f(t):

x(t) =
1
mω0

∫ t

−∞
sinω0(t− t0)f(t0)dt0 . (11)

If the driving term is periodic in time with period T

f(t0 + T ) = f(t0) ⇒ x(t0 + T ) = x(t0) , (12)

as it is the case for the most important perturbations in a circular accelerator,
the solution can be written in the form

mω0x(t) =
1

2 sin ω0T
2

∫ t+T

t

cos
[
ω0(t− t0) + ω0T

2

]
f(t0)dt0 (13)

4.2 The Inhomogeneous Hill Equation

Now let us apply what we learned from the forced harmonic oscillator to the
inhomogeneous Hill Equation.

d2η

dφ2
+Q2η = f(φ)with f(φ) = Q2β3/2f(s) (14)

Assuming that the perturbation has a periodicity ∆Φ = 2π the solution is:

η(φ) =
1

2 sinπQ

∫ φ+2π

φ

cos [Q(φ0 − φ)− πQ]g(φ0)dφ0 (15)
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In real space and time it can be re-expressed as:

x(s) =

√
β(s)

2 sinπQ

∫ s+C

s

√
β(t) cos [Q(φ(t)− φ(s)) − πQ]f(t)dt (16)

being equivalent to

x(s) =

√
β(s)

2 sinπQ

∫ C

0

√
β(t) cos [|Q(φ(t)− φ(s)| − πQ]f(t)dt (17)

The latter expression is more convenient if the convolution integral is calculated
on a computer.

4.3 Solution in Frequency Space

Since the excitations are periodic in time it is for many applications useful to
consider the solution of the inhomogeneous Hill equation in frequency space.
We replace the driving term by its Fourier decomposition:

d2η

dφ2
+Q2η = g(φ) =

∑
k

fke
ikφ, (18)

with the Fourier coefficients

fk =
1
2π

∫ 2π

0

g(φ)e−ikφdφ (19)

In frequency space the Hill equation transforms into

−ω2η̂ +Q2η̂ = ĝ(ω) (20)

for which we find the solution

η̂ =
ĝ(ω)
Q2 − ω2

(21)

Transforming back into the η-space one obtains

η =
∫ 2π

0

eiωφ ĝ(ω)
Q2 − ω2

dω =
∫ 2π

0

eiωφ

∑
k fke

ikφδ(k − ω)
Q2 − ω2

dω =
∑

k

fk
Q2 − k2 e

ikφ

(22)

Interpretation:

1. The closed orbit becomes unstable as the tune Q of the machine ap-
proaches an integer value (Q = 1, 2, 3 . . . ).

2. For a given perturbation the distortion of the motion is proportional to√
β. Thus high β positions are ideal for beam position monitors and orbit

correctors (dipole kicks). On the other hand, the quadrupoles of a low-β
insertion the β-value can reach very high values (∼ 4000m at LHC). These
quadrupoles must be very accurately aligned and the field quality must
be very good to guarantee a stable particle motion.
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4.4 Particle Motion with Momentum Deviation: Disper-
sion

In the derivation of the Hill equation we already took into account that the
particle has a small momentum deviation ∆p with respect to the nominal mo-
mentum p0. In this case the equation of motion is

x′′(s) +K(s)x(s) =
1
ρ(s)

∆p
p0
. (23)

Obviously the excursion will be proportional to the relative momentum devia-
tion ∆p/p0. To get rid of this trivial factor one defines the dispersion function
D(s):

D(s) =
x(s)
∆p/p0

(24)

which is the solution of the differential equation

D′′(s) +K(s)D(s) =
1
ρ(s)

(25)

Inserting into equ. (17) the driving term 1/ρ(s) one obtains the solution:

D(s) =

√
β(s)

2 sin (πQ)

∫ C

0

√
β(t)[|Q(φ(t)− φ(s))| − πQ] 1

ρ(t)
dt (26)

Examples:

1. Beam Size Including the effect of the beam momentum spread the total
beam size is given by:

σbeam =
√
εβ + (D∆p/p0)2 (27)

2. Measurement of momentum deviations at the LHC

In Fig. 1, we compare the excursion of a particle with ∆p/p0 = 5 10−3

to the 10σ beam profile of the LHC beam close to the interaction point
(s = 0) [2]. We see that for s > 300m the excursion is larger than 10
times the beam with and special detectors can be used to measure the
excursion of the particles.

In case of the LHC one can measure particles with relative momentum
deviations between 2 10−3 and 0.1. One can envisage to use such measure-
ments to study single diffractive scattering of protons. In this processes
one proton is excited into a mass state X with mass M whereas the other
stays intact but has a momentum deviation ∆p/p0 = M2/s, where

√
s is

the center of mass energy.
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3. Layout of a Low-β Insertion

Low-β insertions are used to perform particle collisions at high luminos-
ity. The general layout of such an insertion is sketched in Fig. 2. Two
sets of quadrupoles are used to focus the β to a minimum value at the
interaction point: the inner triplet (objective) and the outer triplet (ocu-
lar). The β function rises steeply behind the interaction point and reaches
its maximum value within the inner triplet. The outer triplet is followed
by a sequence of quadrupoles and dipoles which is tuned such that the
dispersion is zero at the interaction point and the contribution of the
momentum spread to the beam spot size vanishes. Dipoles close to the
interaction point are used to cross and separate the colliding beams.

4. Tidal Forces and the LEP beam energy

The momentum compactation α of a circular accelerator or storage ring
relates the momentum deviation ∆p of a particle to the increase ∆C of
the orbit length

α =
∆C/C0

∆p/p0
. (28)

Inversely, a change of the orbit length can be related to a momentum or
energy change. Such changes of the orbit length are caused by tidal forces
acting on the rocks into which the accelerator structure is embedded [3].
The time dependent gravity variation ∆g/g0 are related to the change of
orbit length via the coefficient

αstr =
∆C(t)/C0

∆g(t)/g0
< 0 (29)

and using the momentum compactation the expected energy variations
can be directly related to the gravity variations:

∆E(t)
Etide=0

= −αstr

α

∆g(t)
g0

. (30)

The results of such a measurement at the LEP together with the theory
prediction are shown in Fig. 2.

4.5 Distortion from Dipole Kicks

The next perturbation we want to consider are deviation ∆B from the nominal
dipole field B0. The driving term f(s) is now proportional to the field error
distribution:

f(s) =
1
ρ(t)

∆B(t)
B0

(31)
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Inserting the driving term into equ. (17) one obtains the closed orbit solution:

x(s) =

√
β(s)

2 sinπQ

∫ C

0

√
β(t) cos [|Q(φ(t)− φ(s))| − πQ]

(
1
ρ(t)

∆B(t)
B0

)
dt
(32)

The simplest error distribution one can imagine is a ’single kick’ at phase
φ = φ0 represented by a δ-pulse of the height ∆(B&)/B0. In this case the
solution can be calculated analytically:

x(φ) =

√
β(φ)β(φ0)
2 sinπQ

∆(B&)
ρ(φ0)B0

cos [|Q(β(φ0)− φ)| − πQ] (33)

The response to a single dipole kick plotted in Fig. 3 is represented by
two cosine-waves emerging from the point where the perturbation occurs. The
strength of the response is proportional to the excitation and to

√
β at the

excitation point.

4.6 Quadrupole Errors and Second Order Resonances

As we saw in the previous section, dipole kicks cause particle oscillation with
amplitudes proportional to the strength of the kick. The motion becomes un-
stable if the tune Q of the machine approaches integer values. A different kind
of resonances occurs if the perturbations are caused by quadrupole errors. In
this case not only the amplitude but also the phase of the motion is modulated.

To understand this we draw the phase space diagram for the perturbation
at phase φ0 (Fig. 4). The particle excursion is:

x = a cosQφ0 (34)

The crucial point is that the kick caused by a quadrupole error ∆(kl) is propor-
tional to the particle excursion

∆x′ =
∆(Bl)
Bρ

=
∆(kl)x
Bρ

(35)

Simple geometry shows that the amplitude change caused by the kick is

∆a = β0∆x′ sinQφ0 (36)

and the phase shift is given by

2π∆Q =
β0∆x′

a
cosQφ0 (37)

Inserting the excursion and the strength of the kick one obtains for the tune
shift:

∆Q =
β0∆(kl)
4πBρ

(cos 2Qφ0 + 1) (38)
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As shown in Fig. 5, the quadrupole error induces a shift and a modulation
of the tune of the machine. Note that the motion becomes unstable if the band
covered by the modulation includes an integer Q value.

From Fig. 6, we see that a special situation occurs for half integer Q values.
Since the strength of the excitation is proportional to the excursion it acts
always in the same direction as the particle motion. For half-integer Q−values
the amplitude changes add up coherently and the motion becomes unstable
(second order resonances).

4.7 Third Order Resonances

The common feature of the responses to dipole and quadrupole kicks are that
their strength does not depend of the particle amplitude itself. This situation
changes if we consider sextupole errors. Here the kick is proportional to the
square of the particle excursion:

∆B =
d2Bz

dx2
x2 =

1
2
B′′x2 (39)

β∆x′ =
βlB′′

2Bρ
x2 =

βlB′′

2Bρ
a2 cosQφ0

2 (40)

Using the same procedure as above one obtains for the change in amplitude:

∆a
a

=
β&B′′

8Bρ
sin 3Qφ (41)

and for the phase shift:

2π∆Q = a
βlB′′

8Bρ
cos 3Qφ (42)

We see that the relative change of the amplitude ∆a/a and the tune shift are
proportional to the amplitude a. The consequence is that stability of the motion
is not only a matter of tune but also of the amplitude. Or more general, their
are areas in the phase space plane where the motion is stable (small amplitudes)
and areas where it is unstable (large amplitudes).
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5 Longitudinal Beam Dynamics

In this chapter we shortly treat the longitudinal motion of particles in circular
machines. The variables in which the motion is usually described are the energy
of the particle referred to the nominal energy and the phase difference referred
to the nominal phase. We will see that the nominal phase difference with respect
to accelerating electric RF field can be chosen such that the particles perform
stable oscillations about this value (synchrotron oscillations). Refs. [1] and [2]
were used to prepare this lecture and more details can be found there.

5.1 Maxwell Equation

Circular accelerators use time varying electro-magnetic fields to accelerate charged
particles. The general expression for the force acting on a particle with charge
q moving with the velocity �v in an electric field �E and a magnetic field �B is:

�F = q �E + q(�v × �B) . (1)

Only the component of the force parallel to �v can increase the velocity of the
particle. This component is proportional to �v �F

�v �F = e �E�v + e (�v × �B)�v︸ ︷︷ ︸
0

. (2)

We see that the magnetic field cannot be used for acceleration. From Maxwell’s
Equation we know, however, that a time varying magnetic field induces an
electric field. Let Φ and �A be the magnetic and electric potentials, respectively.
Then the electric field is given by:

�E = −�∇Φ − ∂
∂t
�A

↙ ↓

dc-acceleration �B = �∇× �A
�∇× �E = − ∂

∂t
�B

(3)

Electrostatic accelerators as for example the Van de Graaf accelerator make
use of the first term. The second term offers two different solutions. This can
be seen by rewriting it as an integral equation:∮

C
�Ed�ds =

∫∫
S
�∇× �Ed�S = − ∂

∂t

∫∫
S
�Bd�S (4)

The two topological scenarios illustrated in Fig.1 are possible. Scenario (a) is
realized in the Betatron and scenario (b) in circular machines using RF cavities.
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5.2 Betatron Acceleration

In the betatron, a time varying magnetic field is used to accelerate the particles
and to hold them on a constant circular orbit. The electric field at the particle
orbit is related to the flux of the magnetic field through the circle inclosed by
the particle by:

Es −− 1
2πr

∂

∂t

∫∫
S
�Bd�S . (5)

The radius of the orbit has to be constant during acceleration, which leads to
the relation:

d(mv)
dt = eEs

mv = −eBsr

}
r = const.⇒ d(mv)

dt
= eEs = −erdBs

dt
(6)

Insertion into equ. (5) gives:

2
dBs

dt
=

1
πr2

∂

∂t

∫∫
S
�Bd�S . (7)

The right side is just the rate of change of the magnetic field averaged over
the circle area (Bav). Hence, the stability condition can be written as:

2
dBs

dt
=
dBav

dt
(Wideröe Condition) . (8)

5.3 Acceleration with Cavities

Let’s assume that the circular accelerator has one acceleration gap to which a
voltage with frequency ω(τ) is applied. The condition that the particle stays in
phase with the high frequency voltage is:∫ t

0

ω(τ)dτ + hΘ = const.⇔ hΘ̇ = ω , (9)

where θ = s/(2πρ) = s/C0. This leads to the synchrotron condition:

ω = hΩ0 = h
2πυ0

C0
. (10)

Hence, the frequency of the time varying electric field has to be an integer
multiple h of the revolution frequency; h is called the harmonic number.

Since the particle beam has a certain momentum spread, the revolution
frequencies and orbit lengths are different for each particle and hence, each
particle will arrive at the acceleration gap at a different time experiencing an
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acceleration different from that of the particle on the nominal orbit. To study
the longitudinal motion we first write down the equation of motion:

d
dtp = eû

C cos θ0 − e
C

∫ R

0
2πr ∂B

∂t dr↙ ↘

eff. traveling Ramping
wave acceleration

. (11)

Here, û is the peak RF voltage, C0 the orbit length and θ0 the phase at which
the nominal orbit arrives at the acceleration gap (Fig. 2). The force acting on
the particle has two components: the first arises from the electric field in the
cavity and the second is induced by the magnetic field, which has to be increased
during acceleration in order to keep the particles on a constant orbit (ramping).
We assume that the voltage is independent of the radial position and that the
rate of change of the particle momentum is much smaller than the revolution
frequency. The momentum deviation with respect to the nominal particle of a
particle arriving at a phase θ is then given by the relation:

C
d

dt
p− C0

d

dt
p0 = eû(cos θ − cos θ0) −

∫ R

R0

2πr
∂B

∂t
dr (12)

Applying the first order expansions R = R0 + ∆R, C = C0 + ∆C, p = p0 + ∆p
yields

∆C
d

dt
p0 + C0

d

dt
∆p = eû(cos θ − cos θ0) − eC0

(
∂B

∂t

)
0

∆R . (13)

Inserting the Cyclotron Relation p0 = −eB0R0 we see that the ramping term
vanishes:

d

dt
∆p =

eû

C0
(cos (θ0 + ∆Θ) − cos θ0) . (14)

The differential equation for the longitudinal motion contains now two time
varying variables ∆p and ∆θ which are not independent. First we relate the
revolution frequency difference ∆Ω to the momentum deviation.

Ω = 2πv/C (15)
∆Ω/Ω0 = ∆v/v0 − ∆C/C0 (16)
∆v/v0 = γ−2∆p/p0 with γ = m/m0 (17)

∆C/C0 = α∆p/p0 with Momentum Compactation α (18)
∆Ω/Ω0 = η∆p/p0 with η = γ−2 − α (19)

The variable η describes the net result of to competing effects: The revolution
frequency increases with velocity but at the same time the bending radius is
increased leading to a decrease of the frequency.
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Now the momentum deviation can be related to the phase shift ∆θ

∆p =
p0
η

∆Ω
Ω0

=
m0γC0

2πη
∆θ̇
h
, (20)

which inserted into the equation of motion yields:

d

dt

(
m0γC0

2πhη
d

dt
∆θ

)
=
eû

C0
(cos (θ0 + ∆θ) − cos θ0) (21)

or shorter

∆θ̈ +
Ωs

2

sin θ0
(cos θ − cos θ0) = 0 , (22)

where we used the definition of the synchrotron oscillation frequency:

Ω2
s =

2πhηeû sin θ0
C2

0γm0
(23)

The meaning of the definition becomes clear if one considers only small phase
shifts. In this case one can perform the expansion:

cos (θ0 + ∆θ) = cos θ0 − ∆θ sin θ0 + O(∆θ2) (24)

and the diff. equation for the time evolution of the phase shift is

∆θ̈ − Ω2
s∆θ = 0 . (25)

For Ω2
s < 0 the particles perform harmonic oscillations with frequency Ωs and

for Ω2
s > 0 the motion is unstable. Note that the sign of Ωs is the sign of η sin θ0

and one obtains two stability regions (Fig. 2):

Stability Condition:

{
0 < θ0 < π/2 for γ < 1/

√
α

0 > θ0 < −π/2 for γ > 1/
√
α

(26)

5.4 Longitudinal Emittance

As for the transverse motion there exists an invariant of the motion which is for
small amplitudes:

∆p2 +
(
E0C0

2πchη

)2 Ω2
s

sinΘ0
∆Θ2 = const.t (27)

Consider the high energy limit, where η = α and ∆E = ∆p, ∆τ = C0
2πch .

Furthermore, we are interested in a situation where the nominal particle is not
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accelerated anymore (θ0 = π/2 , stationary bucket). Then the invariant of the
motion can be written as:

∆E2 +
(
E0Ω
α

)2

∆τ2 = A2 = const. (28)

Equation (28) describes an ellipse with area πA2 in ∆E-∆τ phase space. In a
beam consisting of many particles each particle moves on its own phase space
ellipse. The longitudinal beam emittance is a measure of the area which the
beam occupies in the E − τ space:

εl = 4π∆τ∆E . (29)

Here, ∆τ and ∆E are the rms values of the τ and E distributions centered at
the nominal values τ0 and E0.

The length of a particle bunch is related to ∆τ through

σs = c∆τ (30)

and the longitudinal emittance can be related to the bunch length and energy
spread through:

εl = 4π
σs

c
∆E . (31)

Example:
The longitudinal emittance of the LHC proton beam will amount to 2.5 eVs and
the relative momentum spread will be 1.1 10−4. Using equation (31) we obtain
for the rms bunch length 7.5 cm.
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6 Luminosity

6.1 Definition

The rate dR/dt at which we observe a particular reaction produced in the colli-
sion of two particle beams or the collision of a particle beam with a fixed target
is equal to the reaction cross-section σ of the process times a quantity called
Luminosity L :

dN

dR
= σL (1)

The Luminosity is a measure for the density and overlap of the projectile and
the target in the interaction region. It has to be defined in such a way that the
interaction cross-section calculated from the interaction rate depends only on
the types of the colliding particles and the center of mass energy

√
s and not

on the particle flux and the reference system. This guarantees that the cross-
section becomes a quantity characterizing the underlying reaction process and
which can be compared between experiments using different beams but work at
the same

√
s.

In the case of a fixed target experiment the calculation of the luminosity is
simplest [1] (Fig. 1). Assuming a homogeneous target medium with an front
area much larger than the area A covered by the beam , the rate only depends
on the flux of the incoming particles (iproj), the particle density of the target
medium (ntar) and the length of the interaction region (l).

dR

dt
= σiprojntargl (2)

L = iprojntargl (3)

We see that the unit of the luminosity is cm−2s−1. Assuming that in the fixed
target scenario the beam has velocity β0c, the flux is i = Aβ0cγ0nproj.

Now we want to consider a system of colliding beams, which have velocities
β1 and β2 and compare it to a fixed target scenario with the same

√
s and target

velocity β0. In this case β1 is not independent of β2 but

β1 =
β0 − β2

1 − β0β2
(4)

The luminosity is now proportional to the product of the densities of the two
beams times a relativistic flux factor βrel.

L ∝ n1n2βrel (5)

The flux factor can be obtained by applying the appropriate Lorentz-Transformation
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into the corresponding fixed target system:

βreln1n2 = βrelγ1nprojγ2ntar (6)
= β0γ0nprojntarg (7)

⇒ (8)

βrel =
β0γ0

γ1γ2
= β1 + β2 (9)

In a more general case, the two beams can cross under an arbitrary angle
and the relativistic flux factor is:

βrel =
√
|�β1 − �β2|2 − |�β1 × �β2|2 (10)

=
√

β2
1 + β2

2 + 2β1β2 cosφ − β2
1β2

2 sinφ2 (11)

Normally, one has to consider one of the following special cases

βrel =




2β cos φ
2

√
1 − β2 sin φ

2

2
β1 = β2 = β

βrel = 2 cos φ
2

2
β = 1

βrel = 2 β = 1, φ = 0

(12)

Before writing down the luminosity formula for arbitrarily shaped colliding
beams we introduce some useful quantities describing the geometry of the beams.

6.2 Beam Profiles

Particles in storage rings travel in bunches or continuously (coasting beams), and
collide either head-on or at a small angle φ. Mathematically, we can characterize
the bunches by the number of particles per bunch (beam) N and the normalized
beam profile (or density) ρ(x, z, s, t). In the following we assume that there is
no correlation between the three spatial coordinates and that the beam moves
in the s-direction, x and z are the transverse directions:

ρ(�r; t) = ρx(x)ρz(z)ρs(s − ct) (13)

∫ +∞

−∞
dqρq(q) = 1 (q = x, y, z) (14)

The x-axis is parallel to the crossing plane. The crossing is described by the
transformation

x → x cos
φ

2
− s sin

φ

2
(15)

s → x sin
φ

2
+ s cos

φ

2
. (16)

45



Since the lateral dimension of the bunches is usually orders of magnitude
larger than the transversal, the transformation of s simplifies to

s → s cos
φ

2
. (17)

The correlation function (overlap function) between two beam profiles is
defined by the convolution:

ρ̃1,2
q (q) =

∫ +∞

−∞
drρ1

q(r)ρ
2
q(r − q) . (18)

The effective beam size is defined as the inverse of the correlation function
at the origin

qeff =
1

ρ1,2
q (0)

(19)

From the normalization condition one obtains the ‘Van der Meer’ Relation
for symmetric beams

∫ +∞

−∞
dqρ̃1,2

q (q) = 1 (20)

6.3 Luminosity for Arbitrarily Shaped Beams

In the general case, the luminosity L is given by the time averaged integral of
the product of the beam densities in the interaction point over the interaction
volume V times the relativistic flux factor [3]:

L = cβrelN1N2
1

trev

∫ trev

0

dt

∫
V

d3�rρ1(�r, t)ρ2(�r, t) . (21)

In the high energy limit of beams colliding with the same velocity β1 = β2 =
1 we write:

L =2N1N2f cos
φ

2

2 ∫
ds0

∫∫∫
dxdzdsρ1

x(x cos
φ

2
− s sin

φ

2
)ρ2

x(x cos
φ

2
+ s sin

φ

2
)

• ρ1
z(z)ρ

2
z(z)ρ

1
s(s cos

φ

2
− s0)ρ2

s(s cos
φ

2
+ s0)

,where s0 = ct and f is the revolution frequency.
(22)
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Performing step by step the integration yields:

L =
2N1N2f cos φ

2

zeff

∫∫
dxdsρ1

x(x cos
φ

2
− s sin

φ

2
)ρ2

x(x cos
φ

2
+ s sin

φ

2
)

•
∫

ds0ρ
1
s(s cos

φ

2
− s0)ρ2

s(s cos
φ

2
+ s0)

=
2N1N2f cos φ

2

2

zeff

∫∫
dxdsρ1

x(x cos
φ

2
− s sin

φ

2
)ρ2

x(x cos
φ

2
+ s sin

φ

2
)ρ̃1,2

s (2s cos
φ

2
)

=
2N1N2f cos φ

2

zeff

∫
dsρ̃1,2

x (2s sin
φ

2
)ρ̃1,2

s (2s cos
φ

2
)

(23)

For small and large angles one finds the following limiting cases:

L =




N1N2f
xeff zeff

φ = 0

N1N2f
xeff seff

φ = π

(24)

Examples

1. Continuous beams with crossing angle φ (as at the ISR):

ρ1
s(s) = ρ2

s(s) =
1

2πR
(25)

ρ̃1,2
s (s) =

1
2πR

(26)

Ldc =
N1N2f cos φ

2

2πRzeff

∫
dsρ̃1,2

z (s sin
φ

2
) =

N1N2f

2πRzeff tan φ
2

(27)

=
I1I2

e2czeff tan φ
2

, (28)

where

I = Nef and f =
c

2πR
(29)

2. Bunched beams with crossing angle φ and Gaussian profiles (as at the
LHC)
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ρ1
s(s) = ρ2

s(s) =
1√
2πσs

exp

(
− s2

2σ2
s

)
(30)

ρ̃1,2
s (s) =

1
2
√

πσs
exp

(
− s2

4σ2
s

)
(31)

and equivalently for ρx(x) and ρz(z) but with widths σx and σz.

For the luminosity per bunch one obtains:

Lbunch =
N1N2f

xeff zeff

1√
1 +

(
tan φ

2 seff

xeff

)2
(32)

with xeff = 2
√

πσx , zeff = 2
√

πσz andseff = 2
√

πσs.

6.4 Vertex Distribution

The luminosity is calculated by integrating over the reaction volume or in other
words by integrating over the vertex distribution. For many applications the
vertex distribution is of special interest, it can be calculated from the relation:

L =
N1N2fcosφ

2

zeff

∫
ds

∂V
∂s

(s) (33)

∂V
∂s

(s) = ρ̃1,2
z (s sin

φ

2
)ρ̃1,2

s (s cos
φ

2
) (34)

In general the crossing angle is small and the bunch shapes are approximately
equal. Hence, we may write

ρ1
s(s) = ρ2

s(s) = ρ(s) (35)

s sin (φ) ≈ 0, cos (φ) ≈ 1 (36)

In this case, one obtains for the width σvertex of the vertex distribution:

〈s2〉 =
∫

ds s2ρ̃1,2
s (2s)∫

dsρ̃1,2
s (2s)

=
1
2

∫
ds s2ρ(s) =

1
2
σ2

s (37)

σvertex =
√
〈s2〉 =

1
2
σs (38)
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We see that the width of the vertex distribution is a factor
√

2 smaller than the
bunch size.
Examples

1. Bunched beams with Gaussian shape

The vertex distributions is Gaussian with σvertex = 1
2σs

1√
1+(φσs

2σz
)2

2. Continuous beams with Gaussian profile

The vertex distribution is Gaussian with σvertex = 1√
2sin φ

2
σx

6.5 The Van der Meer Method for Luminosity Measure-
ments

Simon van der Meer [2] found a simple method for measuring the luminosity:

Displace the beams by a distance x0 and record the event rate as a function
of the displacement. The effective beam size in the direction of the displacement
is then given by the ratio of the integral of the rate curve and the rate at x0 = 0.

Applying the formalism discussed in the preceding sections it is easy to un-
derstand that this method works.

Assuming that the colliding beams are not aligned in the x−andz− directions
we have to modify the luminosity formula using the following transformation:

x → x + x0 (39)
z → z + z0 (40)

The reaction rate R recorded at at (x0, z0) is

R(x0, z0) = R0

∫
dsρ̃1,2

x (2s sinφ/2 − x0)ρ̃1,2
z ρ̃1,2

s (2s cosφ/2) (41)

In general, R0 depends also on the acceptance A of the detector and the
cross-section σpart of the observed process. The maximum rate is observed
when the displacements are equal to zero.

R(0, 0) = R0
1

zeffxeff (seff , φ)
(42)
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Integrating over the rate as a function of the displacements one obtains using
the the Van der Meer Relation :∫

dx0R(x0, 0) = R0
1

zeff
(43)

∫
dz0R(0, z0) = R0

1
xeff (seff , φ)

(44)

The ratios of the integrals and the maximum value of the rate yield the effective
beam sizes: ∫

dz0R(0, z0)
R(0, 0)

= zeff (45)
∫

dx0R(x0, 0)
R(0, 0)

= xeff (seff , φ) (46)

The luminosity can now be calculated from the effective beam sizes and the
beam currents using

L =
I1I2

e2f

1
zeffxeff (seff, φ)

. (47)
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